

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039856
Article Type:	Original research
Date Submitted by the Author:	30-Apr-2020
Complete List of Authors:	Byrne, Andrew; DAFM, One-Health Scientific Support Unit O'Brien, Kirsty; Health Information and Quality Authority Walsh, Kieran; Health Information and Quality Authority McEvoy, David; University College Dublin, School of Public Health, Physiotherapy and Sports Science Collins, Aine; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis; Government of Ireland Department of Agriculture Food and the Marine Hunt, Kevin; University College Dublin, Centre for Food Safety Casey, Miriam; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis Barber, Ann; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis Butler, Francis; University College Dublin, Centre for Food Safety Griffin, John Lane, Elizabeth; Government of Ireland Department of Agriculture Food and the Marine; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis McAloon, Conor; UCD School of Agriculture Food Science and Veterinary Medicine, School of Veterinary Medicine Wall, Patrick; University College Dublin, Public health More, SImon; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis
Keywords:	Epidemiology < INFECTIOUS DISEASES, VIROLOGY, INFECTIOUS DISEASES, PUBLIC HEALTH
	•

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

1	
2	
2	
ر ۸	
4	
5	
6	
7	
8	
9	
10	
11	
17	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 ⊃1	
21	
22	
23	
24	
25	
26	
27	
29	
20	
29	
30	
31	
32	
33	
34	
35	
36	
50	
3/	
38	
39	
40	
41	
42	
43	
44	
1	
45	
46	
47	
48	
49	
50	
51	
57	
52	
53	
54	
55	
56	
57	
58	
50	
22	
00	

1	Inferred duration of infectious period of SARS-CoV-2: rapid scoping review
2	and analysis of available evidence for asymptomatic and symptomatic
3	COVID-19 cases
4	Andrew W. Byrne ¹ , David McEvoy ² , Áine B. Collins ^{3, 6} , Kevin Hunt ⁴ , Miriam Casey ³ , Ann Barber ³ ,
5	Francis Butler ⁴ , John Griffin ⁶ , Elizabeth A. Lane ^{3,6} , Conor McAloon ⁵ , Kirsty O'Brien ⁷ , Patrick Wall ² ,
6	Kieran A. Walsh ⁷ , Simon J. More ³
7	¹ One-Health Scientific Support Unit, DAFM, Government of Ireland, Kildare Street, Dublin 2, Ireland.
8	https://orcid.org/0000-0003-0296-4586
9	² School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield,
10	Dublin 4, Ireland.
11	³ Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University
12	College Dublin, Belfield, Dublin 4, Ireland.
13	⁴ School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
14	⁵ School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
15	⁶ Department of Agriculture, Food and the Marine, Government of Ireland, Kildare Street, Dublin 2,
16	Ireland.
17	⁷ Health Information and Quality Authority (HIQA), Unit 1301, City Gate, Cork, Ireland.

1 2		
2 3 4	18	Abstract
5 6	19	Objectives: Our objective was to review the literature on the inferred duration of the infectious
7	20	period of COVID-19, caused by SARS-COV-2 virus, and provide an overview of the variation
8 9 10	21	depending on the methodological approach.
11 12	22	Design: Rapid scoping review. Literature review with fixed search terms, up to 1 st April 2020. Central
12	23	tendency and variation of the parameter estimates for infectious period in (a) asymptomatic (b)
14 15	24	symptomatic cases from (i) virological studies (repeated testing), (ii) tracing studies (iii) modelling
16 17	25	studies were gathered. Narrative review of viral dynamics.
18 19	26	Information sources: Search strategies developed and the following searched: PubMed, Google
20	27	Scholar, MedRxiv, BioRxiv. Additionally, the Health Information Quality Authority (Ireland) viral load
21	28	synthesis was utilised, which screened literature from PubMed, Embase, ScienceDirect, NHS
23 24 25	29	evidence, Cochrane, medRxiv and bioRxiv, HRB open databases.
25 26	30	Results: There was substantial variation in the estimates, and how infectious period was inferred.
27 28	31	One study provided approximate median infectious period for asymptomatic cases of 6.5-9.5 days.
29	32	Median pre-symptomatic infectious period across studies varied over <1-4 days. Estimated mean
30 31	33	time from symptom onset to two negative RT-PCR tests was 13.4 days (95%CI: 10.9-15.8), but was
32 33	34	shorter when studies included children or less severe cases. Estimated mean duration from
34	35	symptom onset to hospital discharge or death (potential maximal infectious period) was 18.1 days
35 36	36	(95%CI: 15.1–21.0): time to discharge was on average 4 days shorter than time-to-death. Viral
37 38	37	dynamic data and model infectious parameters were often shorter than repeated diagnostic data.
39 40	38	Conclusions: There are limitations of inferring infectiousness from repeated diagnosis, viral loads,
41 42	39	and viral replication data alone, and also potential patient recall bias relevant to estimating exposure
43	40	and symptom onset times. Despite this, available data provides a preliminary evidence base to
44 45	41	inform models of central tendency for key parameters, and variation for exploring parameter space
46 47	42	and sensitivity analysis. Some current models may be underestimating infectious period
48 49	43	
50 51 52	44	Strengths and limitations of this study
53 54	<u>/</u> 5	• A comprehensive overview of the literature pertaining to inferred infectious duration of
55	45 16	COVID-19, including indirect manufact from virological contact tracing, and modelling
56 57	40	etudios to 1% April 2020
58	47	
59 60	48	 Both narrative review and quantitative analysis presented

1		
2 3	40	
4	49 •	Small number of comparable parameter estimates for meta-analysis is a limitation
5	50 •	Much of the current research material on COVID-19 is from preprint papers, and therefore
6 7	51	have not gone through formal peer review
8		
9		
10		
11		
12		
14		
15		
16		
17		
18		
20		
20		
22		
23		
24		
25 26		
20		
28		
29		
30		
31		
32 33		
34		

BMJ Open

52 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus, emerged in China in late 2019.[1,2] The virus causes COVID-19, a disease characterized by variable, mainly respiratory, symptoms across cohorts, from asymptomatic cases through to mild (for example, dry cough, fever) and severe cases (for example, pneumonia).[3,4] The severity of symptoms, and their clinical outcome, have been reported to vary by age-class and whether patients have underlying comorbidities. The case-fatality rate increases with age, and are highest for those above 70 years. [5,6] There are several cases of asymptomatic test-positive patients reported in the emerging literature (e.g. [4,7,8]). Furthermore, asymptomatic (and pre-symptomatic) cases have been shown to be infectious, and secondary cases have been reported.[9,10] However, the duration of this infectious period is difficult to measure accurately, and the time course of the natural history of infection generally must be inferred indirectly, via contact tracing of cases, serial repeated diagnostic virological studies, and/or through modelling approaches. Symptomatic cases can experience an infectious pre-symptomatic period before the onset of symptoms, therefore understanding the whole infectious period for this cohort requires estimating the duration of both periods. It is essential to rapidly gain insight into this key variable impacting our understanding of COVID-19 epidemiology. Anderson et al. [11] point out one of the "key unknowns" is the infectious period for COVID-19, which they suggest may be 10 days but subject to great uncertainty.

Here we gathered data from published research from peer-reviewed and preprints from 1st
 December to 1st April 2020, to characterize the variation in the infectious duration inferred from the
 three lines of evidence. We also provide a narrative review of the viral dynamic literature. Our focus
 was on duration, relative infectiousness has been dealt with elsewhere [12,13]

The aim of this review was to provide an overview and critical appraisal of published and preprint
 articles and reports that assess or quantify the inferred duration of the infectious period in order to
 best parameterise COVID-19 epidemiological transmission models.

2	
3 4	
5	
6 7	
8	
9 10	
11	
12	
13 14	
15	
16 17	
18	
19 20	
20 21	
22	
23 24	
25	
26 27	
27 28	
29	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40 41	1
42	1
43 44	1
45	_
46 47	1
48	1
49 50	1
50 51	1
52	-
53 54	1
55	1
56 57	1
58	1
59	1

77 Materials and Methods

78 Conceptual model of population infection dynamics

Infectious period was contextualised in relation to a working conceptual model of COVID-19 disease
dynamics (Figure S1, supplementary material 1). From this conceptual model, three parameters
were identified as important in context of this study:

- T2, defined as: Duration of the total infectious period for asymptomatic cases, post-latent to
 recovery ['recover' in this context relates to clearing of infection]
- 84T3, defined as: Duration of pre-symptomatic infectious period for those infected individuals85who subsequently develop symptoms (that is, post-latent to onset of symptoms)
- 86 T5, defined as: Duration from onset of symptoms to recovery* or death.
- 87 * recovery was inferred as either the first of two clear RT-PCR tests, or hospital discharge after
 88 admission from COVID-19 related symptoms.
- 89 "Asymptomatic" case definition was interpreted pragmatically following Davies et al. [14,15], and
 90 may include very mild symptoms that may occur but are unnoticed.
- 91 T2, T3, T5 represent readily measurable parameters, but may be upper limits of infectious period, as 92 patients may be non-infectious for a period before recovery or death. We also review evidence
- 93 where infectiousness is inferred from viral shedding and contract tracing [transmission], see below.

94 Literature search

- A survey of the literature between 1st December 2019 and 1st April 2020 for all countries was
- 96 implemented using the following search strategy. Publications on the electronic databases PubMed,
- 97 Google Scholar, MedRxiv and BioRxiv were searched with the following keywords: "Novel
- 7 98 coronavirus" OR "SARS-CoV-2" OR "2019-nCoV" OR "COVID-19" AND "infectious". Additionally,
- 9 99 national and international government reports were monitored. No restrictions on language or
- 10 publication status were imposed so long as an English abstract was available. Articles were evaluated
- 2 101 for data relating to the aim of this review; all relevant publications were considered for possible
- 102 inclusion. Bibliographies within these publications were also searched for additional resources.
- ¹⁶ 103 Manual searches of the literature was undertaken using daily updated COVID19 collections
- 104 from the National Centre for Biotechnology Information (NCBI) and MedRxiv servers
- 105 (https://connect.medrxiv.org/relate/content/181), respectively, searching specifically for
- 51 106 papers relating to "infectious period" or "infectious duration" from both empirical and
 52 53 107 modelling studies.
- Finally, we utilised the complementary work undertaken by the Health Information and Quality
- ⁵⁶ 109 Authority (HIQA) of Ireland, specifically the evidence summaries relating to asymptomatic
- transmission and viral load [16,17]. The protocol for the evidence synthesis is published on the HIQA
- ⁵⁹ 111 website [18]. Briefly, the evidence synthesis process included searching databases from 30th

BMJ Open

3 4	112
5	113
6 7	114
8	
9 10	115
11	116
12 13	117
14	118
15 16	119
17 18	120
19 20	121
21 22	122
23 24	123
25	124
26 27	125
28 20	126
30	127
31 32	120
33	120
34 35	123
36 37	130
38	131
39 40	132
41	133
42 43	134
44 45	135
45 46	
47 48	136
49	137
50 51	4.0.0
52 52	138
55 54	139
55 56	140
57	141
58 50	142

60

December 2019 to 27th March 2020 (PubMed, Embase, ScienceDirect, NHS evidence, Cochrane,
medRxiv and bioRxiv, HRB open), screening, data extraction, critical appraisal and summarizing the
evidence.

Our aim was to have as great a breadth for an evidential base as possible, to clarify what evidence
 was available to inform on the infectious period of COVID19, and to identify key characteristics of
 the data sources and their interpretation. Therefore, our approach is a scoping review (following
 [19]). However, due to the emergent nature of COVID-19, this work is considered a rapid review.[20]
 This paper follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses—
 Extension for Scoping Reviews (PRISMA-ScR) checklist.

122 Inclusion criteria were for papers that provided data to inform duration of infectious period based
 on: time from symptoms to recovery; time from symptoms to death; time from symptoms to
 diagnostic test clearance [≥two clear tests, defined as at least two consecutive negative reverse
 transcriptase polymerase chain reaction (RT-PCR) tests conducted 24 hours apart]; pre-symptomatic
 infectious period; time from first diagnostic test to diagnostic test clearance [≥two clear tests] for
 pre-symptomatic/asymptomatic cases. Inclusion criteria for viral dynamics, were papers which
 reported viral load via cycle threshold (Ct) values from RT-PCR testing over repeated sampling of
 infected patients, and studies that additional reported viral isolation.

For quality control, studies were (*i*) selected and screened initially by three members of the team
from search terms outlined above (*ÁBC, KH, FB*), with parameters identified and recorded. (*ii*) This
was reviewed and supplemented by manual search by a different two team members (*AWB, DM*),
again with parameters identified and recorded. (*iii*) Finally, the review was then internally reviewed
by an additional two members of the team (*CMc, MC*), and cross-referenced with other parameter
synthesis documents being worked on by the group (*all authors*).

7 136 Parameter comparison

137 *Parameters of interest*

1381. A-priori it was decided to harvest parameter estimates for (i) asymptomatic, and (ii)53139symptomatic cases. As the period of infectiousness can only be estimated indirectly,54140parameter estimates from the literature was gathered from three different methodological55140approaches:Virological studies tracking patients overtime undertaking serial testing, where58142infectious period was inferred from diagnostic testing history and/or by virus isolation.

Page 8 of 61

1 2		
3	143	2. Contact tracing studies where infectiousness is inferred by infector-infectee histories and/or
4 5	144	clusters of infection.
6 7	145	3. Model parameters entered into mathematical models [priors] representing explicitly
8	146	infectious periods, or model parameters estimated from mathematical models [posterior
9 10 11 12 13 14 15 16 17 18 19 22	147	estimates] estimating explicitly infectious periods
	148	
	149	Visual and quantitative comparisons
	150	To compare parameters visually, simulated distributions were estimated from the central tendencies
	151	and variation metrics described in the primary literature. To simulate data, 10,000 random variates
20 21	152	were drawn from random number functions in Stata (ME, version 15.1; StataCorp. 2017. Stata
22	153	Statistical Software: Release 15. College Station, TX: StataCorp LLC) [rnormal, rgamma]. Where
25 24	154	possible, the distribution reported within the primary literature was used to represent the
25 26	155	distribution (e.g. Gaussian, Gamma). Where distributional data could not be inferred, point
27 28	156	estimates were presented.
29 30 31 32 33 34 35 36 27	157	There were adequate comparable data gathered on the duration of T5 (duration from onset of
	158	symptoms to death or recovery) from virological studies to employ a meta-analytic model. Many of
	159	the studies report different central tendency estimates, including mean and median. Methods of
	160	reporting variation across this central tendency included standard deviation, range, inter-quartile
	161	range. To facilitate meta-analysis, reported estimates from all studies were converted to the mean
37 38 39	162	and standard deviations based on the formulae given in Wan et al. [21].
40 41	163	To obtain the standard deviations from 95%CI, the method outlined in the Cochrane handbook [22]
42	164	was used:
43 44 45	165	SD: vn(Upper limit of CI – Lower limit of CI)/3.92
45 46 47	166	
47 48 49	167	Standard Error (SE) was calculated from Standard Deviation (SD) and sample size (n), using:
50 51 52	168	SE = SD/SQRT(n)
52 53	169	Comparisons were made using the METAAN package in Stata 15, using the random-effects
54 55	170	(DerSimonian-Laird) model.[23] This model assumes heterogeneity between the studies; that is, it
56	171	assumes that the true effect can be different for each study. The model assumes that the individual-
57 58	172	study true effects are distributed with a variance $ au^2$ around an overall true effect, but the model
59 60	173	makes no assumptions about the form of the distribution of either the within-study or the between-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 9 of 61

 BMJ Open

studies effects. Weightings were derived from the standard error [precision] around the estimate.
 175 Comparisons were presented as forest plots. Heterogeneity between studies was tested using
 176 Cochrane's Q; the magnitude of the heterogeneity was categorised using *I*² as high (>75%), moderate
 177 (50-75%), or low (<50%).[24]

Variation in duration across T5 virological studies was compared using a random effects meta-regression model, using the METAREG command in Stata 15.1. The hypothesis that heterogeneity may be related to the inclusion of children or depending on symptom severity within the sample, was tested in separate univariate models. Severity was dichotomised (0/1) into studies that included patients described as having 'mild' or 'mild-moderate' symptoms, versus studies that included patients with 'moderate-severe' or 'severe' symptoms. Similarly, studies were categorised into having some samples from "children" (as reported in the paper), or wholly adult samples. These variables were then fitted as a dichotomous dummy predictor [independent]. The parameter estimates from the regression model was solved using restricted maximum likelihood (REML); additionally, p-values were estimated using a Monte Carlo model with 1000 permutation test.[25] Raw patient-level data were available from three studies in relation to time from onset to hospital discharge or death (potentially inferring maximal T5 duration). To estimate the predicted mean and

190 95%CI duration across these studies, data were analysed using a Gaussian random effects model
 191 (using XTREG command, Stata 15), with study categories fitted as the RE. A linear regression model
 192 with 'study' fitted as a categorical dummy variable was used to estimate the difference between
 193 duration across study datasets. Code and data are provided in Supplementary Material 2 & 3.

3839 194 *Viral dynamics*

A narrative comparison of reported viral dynamics from studies that undertook serial viral load
 A narrative comparison of reported viral dynamics from studies that undertook serial viral load
 estimates from patients over their period of observation was undertaken. Trends in the literature,
 strength and weaknesses were identified, and a conceptual model illustrated.

1 ว		
2 3 4 5 6 7 8 9	198	Results
	199	Parameter comparison
	200	Overall, 65 parameter estimates were harvested from 48 papers (Tables 1, 2, 3).
10 11	201	Infectious period for asymptomatic cases (T2)
12 13	202	The overall distributions and point estimates from studies for T2 are presented in Figure 1 and Table
14 15	203	1.
16 17	204	Two virological studies reported on infectious period based on serial diagnostic testing, for
18 19	205	asymptomatic cases, were found to have informative data. One of these studies reported on only
20	206	one asymptomatic case, with exposure to negative tests being 11 days (Zhou et al, 2020). This
21 22	207	duration should be considered an over-estimate, given that a latent period is not taken into
23	208	consideration. Hu et al. [7] tracked infections of close contacts to infected persons and considered
24 25	209	patients asymptomatic at time of diagnosis. Infectious period was defined as time from diagnosis to
26 27	210	the first of two clear tests, providing a median duration of 9.5 days (n=24) range: 1 – 21; 3.5-13.0
28 29	211	IQR.
30 31	212	Importantly, Hu et al. [7] found that the infectious period was different between those who
32 33	213	subsequently exhibited symptoms (i.e. pre-symptomatic) and those who did not: The median
33 34 35 36 37 38	214	duration for asymptomatic infectious was 6.0 days (IQR: 2.0 - 12.0; N=19). This was reduced to 4.0
	215	days (2.0 - 15.0) for cases that were asymptomatic without abnormal computed tomography (CT)
	216	scans (n=7).
39 40	217	Two tracing studies provide informative data (Table 1; [7,8]). Infectious period was inferred
41 42	218	indirectly from data provided in Ma et al. [8], whereby infectious period was estimated as the
43	219	difference between the upper latent period estimate minus the serial interval. Ma et al. [8] reports
44 45	220	on 49 asymptomatic cases and inferred serial interval from infector-infectee pairs. Serial interval was
46 47	221	calculated by assuming "onset" was at first diagnosis. Hu et al. [7] reported on a case-study cluster
48	222	of infection within a house where the primary case was asymptomatic. Secondary infections
49 50	223	occurred 4-9 days after index case exposure, the index patient tested positive until day 29 post
51 52 53	224	exposure.
55 54	225	Modelling studies that have attempted to fit differing parameters depending on the severity of
55 56	226	symptoms have used differing nomenclature, for example asymptomatic, "mild" or subclinical cases
57 58 59 60	227	(Table 1).[14,15,26,27] Two papers by Davies and colleagues [14,15]model this parameter as a

1 2		
3	228	gamma distribution with a mean periods of 5-7 days (Fig. 2); importantly, these papers assume
4 5 6	229	infectious period is the same for asymptomatic and symptomatic cases.
7 8	230	Pre-symptomatic, infectious period (T3)
9 10	231	Pan et al. [3] and Hoehl et al. [28] describe the cases of two individuals tracked and serially tested by
11 12	232	real-time reverse transcriptase polymerase chain reaction (RT-PCR) after being exposed to a patient
13	233	with confirmed infection. In the latter study, the virus was isolated from samples, indicating
14 15 16	234	transmission potential.
16 17	235	Four studies from China, Germany and Singapore provide informative data through tracing infections
18 19	236	from cluster of infections, and through infector-infectee pairs (Table 2).[4,9,29,30] These papers
20 21	237	included the study by Rothe et al. [9], which clarified that an asymptomatic patient visiting Germany
22	238	from China may have actually experienced very mild symptoms around the time of transmission
23 24	239	occurred (see discussion).
25 26	240	Five modelling papers incorporated pre-symptomatic infectious period reported as prior
27 28	241	distributions or estimated as a model output. Two papers describe the prior distribution using a
29 30	242	gamma distribution.[14,15] Tindale et al. [31] provide mean point estimates under four different
31	243	scenarios (two populations, early and late epidemic period). Peak et al. [32] derives estimates of the
32 33	244	pre-symptomatic infectious duration from a model of serial interval, and report scenarios where
34 35	245	there are pre-symptomatic infectious periods.
36 37	246	The approximated distributions are simulated in Figure 2, which demonstrates the between-study
38 39	247	heterogeneity in this parameter. The point estimates primarily cluster around the central tendencies
40 41	248	of the distributions, except for Tindale et al. [31], for a model reporting for late occurring cases in
41 42 43	249	Tianjin, China (8.2 days).
44 45	250	Post-symptom onset, infectious period (T5)
46 47	251	The T5 parameter was informed from three lines of evidence from empirically driven studies:
48 49	252	• time from symptoms onset to the first of two clear RT-PCR tests
50	253	• time from symptoms to hospital discharge
52	254	• time from symptoms to death
53 54	255	Figure 3 presents the forest plot for the mean time from symptom onset to clearance, based on
55 56	256	serial testing meta-analysis (n=15). The mean estimated duration was 13.4 days (95%CF 10.9-15.8)
57 58	257	There was high heterogeneity across studies (Cochrane's $\Omega \cdot p < 0.001 \cdot l^2 > 75\%$). A random effects (RF)
59 60	258	meta-regression model suggested significant variation depending on whether studies included
00	-	

children as part of the sample (n=15 studies; Proportion of between-study variance explained Adj. $R^2 = 43.8\%$). Overall, the model estimated studies including children had on average 5.8 days shorter duration than adult only studies (95%CI: 1.7-10.0; p=0.040; SE(p)=0.003). A second univariate RE meta-regression model suggested that there was non-significant increased mean duration of 4.0 days (95%CI: -0.6-8.6; p=0.111; SE(p)=0.005; Adj. R² = 22.0%; n=14) for studies that included moderate-severe or severe cases, relative to mild or mild-moderate severity cases.

High transmissibility during the first 5 days post symptom onset was described by Cheng et al. [33], based on secondary attack rates for 12 infector-infectee pairs. No contacts (n=1043) with primary cases were infected after five days of the index case onset of symptoms, inferred by the authors to suggest transmission occurring at symptom onset (but conceivably also suggest pre-symptomatic infection). Based on a cumulative density function, the authors suggest that infectiousness declines rapidly from onset of infection (distribution was truncated at 30 days); estimated cumulative infectiousness was 66.9% (95%CI: 28.7-94.8) by day 1, and reached 86.9% (95%CI: 64.3-99.5) by day 5 post-symptom onset (Figure S2).

For tracking studies relating to time to hospital discharge or death, raw case level data were available (studies n=3).[31,34–36] Histograms of the raw data are presented in Figure 4, along with the aggregated distribution. A random effect model suggested a mean duration of 18.1 days (95%ci: 15.1 – 21.0). However, there was significant variation across studies, with time to discharge being 4.96 days shorter (95%CI: 2.15-7.76; [35]), or 3.79 days shorter (95%CI: 0.8-6.7; [31]), than time-to-death [34].

Two modelling papers use priors (mean: 3.2-3.5 days) to represent clinical infectious period.[14,15]
 However, the distribution for this parameter is right censored when patients are hospitalised or
 isolated and therefore not an estimate of the full infectious period *per se*.

45 282 Infectious period for symptomatic cases (T3+T5)

Two tracing studies supplied parameter estimates for the full infectious period for patients who develop symptoms. [8,29] He et al. [29] inferred from a publicly available dataset of 77 infector-infectee pairs that infectiousness began 2.3 days (95% CI, 0.8–3.0 days) prior to symptom onset, peaking at 0.7 days (95% CI, -0.2-2.0 days), and continued up to 7 days from onset. The authors suggest that the transmission risk diminishes 7 days post symptom onset. This suggests that the average infectious period, assuming a symptomatic infectious period of 7 days was approximately 9.3 days (7.8-10 days 95%CI, where CI is only reported for the pre-symptomatic period). He et al. [29] estimated that the proportion of all transmission that was pre-symptomatic was 44% (95% Cl,

BMJ Open

1		
2 3 4 5 6 7	291	25–69%). Ma et al. [8] analysed data from a number of countries (China, Germany, Japan, Malaysia,
	292	Singapore, Vietnam), collating 1155 cases from public data. They estimate several parameters,
	293	including "maximum latent period" and the serial interval. The authors estimated the infectious
8	294	period as maximum latent period minus the serial interval. Given their parameter estimates and
9 10	295	methodological approach, infectious period would have been 5 days (range 0-24; IQR: 2-9;
11 12 13	296	calculated from data presented within the paper).
14	297	Seven modelling papers reported duration of infectious period (T3+T5; Table 4), with the reported
15 16 17 18 19	298	central tendency for the distribution varying from 3-20 days. The form of the distribution offered to
	299	models for this parameter varied considerably, including point estimates (deterministic models), flat
	300	(uniform), Gaussian, Weibull and gamma distributions. Li et al. [27] estimated the shortest median
20 21	301	duration of 3.45 days, with a flat (uninformative) prior distribution corralled between 3-5 days. In
22 23	302	contrast, Zhu et al. [37] used a mean prior of 10 days, with the model estimated mean duration
23 24 25 26 27 28 29 30 31	303	being 12.5 days (variance 10; Weibull distribution). Piccolomini and Zama [38] used a fixed estimate
	304	of 20 days infectious period, to model the Italian epidemic. Two papers from the same group [14,15]
	305	suggested that infectious period for asymptomatic cases approximated for symptomatic cases where
	306	there was no right censoring (that is, transmission being halted through isolation or hospitalisation;
	307	gamma distributions of mean 5 or 7 days). Tuite et al. [26,39] also assumed the same duration for
32 33	308	"mild" and "severe" symptomatic cases (6-6.5 days).
34		
35 36	309	
37		
38 39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
50 51		
52		
53 54		
55		
56		
57 58		

Viral load dynamics

Viral load was reported from 21 papers using real-time reverse transcriptase polymerase chain reaction (rRT-PCR) testing, generally post-symptomatic monitoring.[3,29,40–59] Qualitatively, the viral dynamics described early increase in viral load, peaking around onset or within 2-4 days of symptom onset (Figure 5 for a theoretical model), before decreasing gradually over the next one to three weeks post symptom onset. Maximum duration of detection ranged from approximately 20-49 days, with the longest duration associated with faecal samples (see below for discussion). The duration where ribonucleic acid (RNA) was recoverable by RT-PCR may have been truncated due to insufficient follow-up in some cases. Studies that have investigated blood samples have provided some evidence for an association with severity of infection [16,60], though it is not clear whether this is a consistent feature of SARS-CoV-2 infection [40].

It should be noted the lack of data on pre-symptomatic or asymptomatic cases with regards viral load. An exception was Kam et al. [61] who describe a pre-symptomatic case in an infant. In another study, Zou et al. [53] undertook serial RT-PCR testing from nasal and throat swab samples from 14 imported cases, and 4 secondary cases, in Guangdong, China. The dynamics of the infection in terms of cycle threshold (Ct) values and RNA copy number were described; Ct values of 30.76, 27.67, 24.56, and 21.48 corresponding to 1.5×10^4 , 1.5×10^5 , 1.5×10^6 , and 1.5×10^7 copies per milliliter. Hence, lower Ct values infer higher viral loads. The authors report on a patient without symptoms, but with positive nasal swabs (Ct values, 22 to 28) and throat swabs (Ct values, 30 to 32) testing positive on days 7, 10, and 11 after contact. Importantly, the authors suggest "the viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients." Furthermore, Kimbell et al. [62] report that Ct values between asymptomatic (21.9 to 31.0), pre-symptomatic (15.3 to 37.9), and symptomatic cases (18.6 to 29.2) within a nursing home environment did not differ significantly. To et al. [59] present data on temporal profile of viral load from saliva samples, and found that median initial and peak viral loads in severe cases were non-significantly higher (p>0.5) by approximately 1 log10 higher than those in mild cases. Liu et al. [58] present data showing viral load being 60 times greater for severe cases relative to mild cases. This lack of pre-symptomatic data may result in left truncation of the risk distribution associated with viral load and shedding. Therefore, the typical timing of peak viral shedding (whether prior to, at, or after onset), and it's impact on transmission, is still uncertain. He et al. [29] reported highest

viral load at symptom onset from patients sampled in a hospital in China. Furthermore, the author's estimate using a separate infector-infectee dataset (n=77) that 44% (95% CI: 25-69%) of infectee

- cases were infected during the pre-symptomatic stage of the infector. Separately, a modelling paper
 - For peer review only http://bmjopen.bmj.com/site/about/guidelines.xhtml

by Ferretti et al. [63] also appears to support this, estimating that 47% (0.9/2) of total transmission
contributing R₀, an overall measure of transmission during an infection, was pre-symptomatic (also
see [33]).

Wölfel et al. [50] provides important data on a cohort of nine 'mild' cases which were serially tested using sputum, swabs (throat and nasopharyngeal), urine and faecal samples over time. Importantly, the virus was isolated, and inferences on viral replication could be made. Viral Isolation, and insights into viral replication, improve inference around viral dynamics and transmission risk. The study suggested high viral loads shortly after symptom onset, which declined thereafter over time. Positive cultures were found from day 3-8 post-symptom onset (Figure S3), and the minimum 5% isolation success was achieved up to 9.8 (95% CI: 8.5-21.8) days post onset from throat and lung samples but not faeces, blood or urine.

Discussion

Inferring infectiousness was challenging given the heterogeneity of evidence available. Virological diagnostic studies provide robust time series of infection, however, is limited by inferring the relationship between PCR diagnostics and infectiousness. These data can also be affected by sampling procedure and sample sites (e.g. upper respiratory, lower respiratory, faeces, urine, blood). We have excluded RT-PCR durations based on faecal sampling due to the uncertainty whether these data pertain to transmission potential ([50]; see below). Virological studies where culturing has taken place, and where viral replication can be inferred would also be considered superior data to infer infectious period, relative to estimates of viral load alone.[50] Where this has taken place, the data would suggest average infectious periods of up to 9.8 days post-symptoms. Recent modelling work suggest that the duration of viral detectability could overestimate the infectious period somewhere between 2-6 days.[64]

Viral load studies suggest peak viral load occurs close to symptom onset (potentially, -1 to 7 days of onset), however there is uncertainty whether this typically occurs prior to, on, or after onset (Figure 5 for conceptual model). High viral loads, measured as Ct values, have been recorded for one week to 20 days post symptom onset, with a general decreasing trend with time. For example, To et al. [59] estimates a declining slope per day for log10 RNA copies per ml of -0.15 (95% Cl -0.19 to -0.11; $R^2=0.71$). There are some studies reporting associations between viral load and symptom severity, with higher metrics of viral load in severe cases. [3,58,59] However, Zou et al. [53], and more recent data from Italy,[64,65] suggest similar viral loads in symptomatic and asymptomatic cases.

We tested the hypothesis that severity of symptoms had an effect on symptomatic infectious duration using a meta-regression approach. There was a trend towards studies that included severe cases tended to have longer duration (estimated to be 4.0 days longer), but the effect was not significant. Some studies have reported an association between duration of infectiousness and severity (e.g. [58]). But uncertainty of whether this is robust remains.

Virological studies that included children (either mixed adult children, or children only cohorts) appeared to have shorter T5 durations (estimate: 5.8 days shorter). Liao et al. [66] present data which suggests that children and 'young adults' (<35 years old) infected cases exhibited long incubation time (exposure to symptom on-set; mean 7.2 days), and short serial interval (mean 6.5 days; median 1.9 days; time from onset in primary to onset in secondary case).

Contact tracing studies provided robust evidence of transmission events, and therefore infectiousness, but can be limited by the inferred timing of events, and symptoms experienced, due

to the self-reported nature of data collection (recall bias). The subjective nature of self-reporting indeed can have an impact on case definitions of 'asymptomatic', which has led to some doubt on asymptomatic transmission in one case.[9] Rothe et al. [9] describe a case of apparent asymptomatic transmission from a Chinese visitor to business associates in Germany, which was cast into doubt when health officials reported that the patient had indeed experienced some, albeit minor, symptoms.[67] Rothe et al. [9] subsequently updated the clarification of the patients self-reported symptoms during the presumed asymptomatic infectious period, which included "feeling warm" and "feeling cold". However, the patient only "recognized getting sick" after she returned to China on day four after the presumed exposure event.

Modelling parameters provide information on how COVID-19 data are being used and interpreted in the research community, given the limited data available. Posterior estimates also provide information on the parameter space at which infectious period central tendency reside, given other parameters and assumptions in the model. Models used highly varied approaches to modelling infectious period, which in turn resulted in highly variable parameter estimates used to inform the studies.

Overall duration findings

There are few data for the precise definition of the asymptomatic infectious period (T2) parameter. Some reported asymptomatic cases can actually be pre-symptomatic, when cases are subject to follow-up (e.g.[66]; see discussion above). However, Hu et al. [7] do provide the data for asymptomatic cases [that remain asymptomatic] across their presumed infectious period. Therefore, in the first instance a parameter mimicking their data is probably the best available data. Note, there is a large variation in this data parameter, and a gamma distribution of a shape alpha 3, beta 2, mean 6, may be appropriate for the initial model runs. Despite these being the primary informative data, caution is required, given the uncertainty around the relationship between RT-PCR results and infectiousness. Overall, an informed central tendency of ~6 days, with very low probability draws for durations >20 days for the T2 parameter may be considered given the current state of knowledge. The pre-symptomatic period is sometimes referred to as 'preclinical infectious' period (parameter T3). This has been estimated from several papers, and the central tendency of these estimates vary

from <1 - 4 days, cautiously approximating to 2 days, on average. The maximal reported period for

T3 from any population, was reported by Tindale et al. [31] at 8.2 days. Current models have used central tendency estimates of 0.5 to 2.4 days.[14,15,26,39] It should be noted, that this period could also be measured as the difference between incubation and latent period, or the difference between serial interval and incubation period.[12] The relative consistency around the duration of this period

Page 18 of 61

419 allows for some confidence of its distribution. Current understanding of viral dynamics of infection
 420 suggest that viral load and shedding increases during post-latent phase, peaking around onset [for
 421 symptomatic cases], before declining.[29,50,53] This aspect of the natural history of infection may
 422 be important when attempting to model transmission dynamics.

Length of infectious period in symptomatic cases that do not isolate (T5 parameter) has also been rarely directly measured in the literature, as serial monitoring of patients in terms of symptoms or viral load (rt-PCR) generally occurs after diagnosis and/or after admission to hospital [from a modelling perspective, this means cases are censored as they are assumed to no longer contribute to transmission]. If natural progression of infection after diagnosis or hospital admission mimics the course of infection for those who do not isolate, the review of the literature describing time to two clear tests is informative. Symptom onset to serial testing clearance [assessed the time to first of two RT-PCR clear tests] averaged 13.4 days (95%CI: 10.9-15.8) from our meta-analysis. In the maximal case, where patients succumb or fully recover from infection, time from symptoms to death or discharge may be informative. Studies that collated such information suggest mean durations of 18.07 days (95%ci: 15.14 - 20.99), but with time to discharge being 4.96 days shorter (95%Cl: 2.15-7.76) on average than time to death. These values may represent an over estimation of the infectious period; one study suggested that there was on average 2.5 days between end of infectiousness and 'removal' (recovery or death).[37]

Cheng et al. [33] provided evidence of transmissibility, based on attack rate from primary to secondary cases, at around symptom onset. The authors estimate cumulative infectiousness from onset, which suggests that 67% of total infectiousness potential occurs by the first day post-onset. Most of the total infectiousness occurs within 5 days (86.9%) post onset, with the remaining infectiousness potential (13.1%) being distributed up to day 30 (this truncation is an assumption by the authors). It is possible that pre-symptomatic transmission occurred during this study, but the authors do not estimate what proportion of transmissions occurred during a pre-symptomatic infectious period, or its potential duration.

A model by He et al. [29] is informative for overall symptomatic duration (T3+T5), using 77 infector-infectee pairs where COVID-19 transmission occurred in China. The study reported that infectiousness was apparent on average 2.5 days prior to symptoms, reached a peak in risk at 0.6 days before symptoms, and decline up until 7 days after onset (9.5 days total infectious period). The proportion of transmission before symptom onset (area under the curve) was estimated as 44% (95% CI, 25–69%), based on inferences on incubation period. The authors suggest their data supported the view that transmission risk decline substantially after 7 days post-symptoms onset.

BMJ Open

Model estimates used for infectious period parameter appears to be shorter than virological studies tracking RNA viral load over time. For example, Liu et al.[27] fitted a flat prior distribution for mean duration (D) fixed to vary between: $2 \le D \le 5$ days, and Lavezzo et al. [64] fixed infectious period to 2 days in their epidemic model; whereas viral repeat testing studies provide evidence to suggest high viral loads can be detected to up 20 days [e.g. pharyngeal swabs], and potentially longer from faecal samples (up to 3-4 weeks post symptoms onset). Oral-faecal transmission risk is currently unknown, but some doubt has been raised about studies that have reported positive RTPCR test results (see [68]; but there may be some evidence of the risk amongst children; [69]). Wölfel et al. [50] has produced an important study that provides some data on viral replication, and the site and duration over which this may be taking place. Their data suggests that viral replication, with high viral loads, occur in the upper respiratory tract, over the first week of symptoms peaking in day 4. Virus could not be isolated from faecal samples, despite high RNA concentration. Furthermore, virus was not isolated from blood or urine in that study.[50]

465 Study limitations

Overall, the studies included were of good quality, though due to the rapid need for information from the global research community many papers are pre-prints that have yet to be reviewed (at time of writing). Many papers were limited in terms of sample sizes, with several papers being case studies of one patient or single cluster outbreaks. There was a diversity of methods employed to infer dynamics of infectiousness across studies, and therefore the evidential base was variable. Some issues around nomenclature were noted, including definitions of asymptomatic, infectious period, latent, and incubation period. It is possible the same data may have been used across different studies, especially where publicly available data were used.

There was significant heterogeneity across study findings, and this was related to diversity of clinical findings and methods employed. The meta-analysis employed for one parameter (T5) using virological studies, where cross study comparisons could be made, suggested that the heterogeneity was high. Fu et al.[70] cautions against combining studies to give an overall estimate without exploring subgroup or meta-regression analysis, which we have done here. The meta-regression was based on a small number of studies (n=12-13). Cochrane's handbook suggests 10 studies for each level of a meta-regression, however in practice much lower numbers have been used to test hypotheses [22], as is the case here. Fu et al. [70] recommend a minimum of 4 studies per category, and therefore we dichotomised our predictor variables to ensure we met this minimum. Aggregating our categories resulted in crude findings.

Page 20 of 61

Another limitation is that a systematic review was not undertaken to inform this research, hence there is a possibility that some relevant studies were overlooked. However, comprehensive search strategies were conducted by two independent research groups to inform this research, hence limiting the potential for missing key studies.

Conclusion

There are few data to inform asymptomatic infectious period (T2 parameter). One study provide data that suggest a median period of 4-9.5 days, however, given the viral dynamics, this distribution could have an extended tail with low probability long infectious periods of up to 20 days. The pre-symptomatic infectious phase (T3) is quite narrowly defined to a mean of approximately 2 days (range: <1-4) within the literature. However, there is great uncertainty around the infectious period from onset to recovery or death (T5 parameter). The symptom onset until clearance (based on two negative RT-PCR tests) parameter estimate of 13.4 days (95%CI: 10.9-15.8) is informative for T5 parameter, only if one assumes that RT-PCR positive results equate to having infectious potential. Many current models corral the infectious period to shorter time periods than what virological studies have suggested, with one recent study suggesting that duration of viral detectability over-estimates the infectious period on average by 2-6 days. While viral RNA can be detected for long periods of time, especially from faecal samples, the ability to isolate the virus ifrom nfected cases quickly declines after one-week post-symptoms. Some modelling papers have assumed that infectious period is invariant to whether cases are asymptomatic or symptomatic, however, the data available are not yet rich enough to inform whether this is a good assumption. Similarly, it is not yet established whether viral loads are similar between asymptomatic and mild, moderate, or severe symptomatic cases, with conflicting reports in the literature.

Word count: 5829

Funding: All investigators are full-time employees (or retired former employees) of University College Dublin, the Irish Department of Food and the Marine (DAFM), or the Irish Health Information and Quality Authority (HIQA). No additional funding was obtained for this research.

Author contributions: AWB conducted the eligibility screening of shortlisted studies, extracted the data and conducted the analyses with input from all authors; AC, KH and FB conducted the initial literature searches; DM, KOB, KW conducted searches and screened shortlisted studies; AWB completed the initial draft of the manuscript; CM reviewed the statistical methods; CM and MC undertook quality control interim review; All authors read and approved the final manuscript.

Data statement: The data and code are presented in Supplementary Material 2 & 3

2		
3 4	516	Competing interests: All authors have completed the ICMJE uniform disclosure form at
5	517	www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted
6 7	518	work; no financial relationships with any organisations that might have an interest in the submitted
8 0	519	work in the previous three years; no other relationships or activities that could appear to have
9 10 11	520	influenced the submitted work
12 13	521	Patient and public involvement statement: It was not appropriate or possible to involve patients or
14 15	522	the public in the design, or conduct, or reporting, or dissemination plans of our research
16 17 18 19 21 22 23 24 25 26 27 8 29 31 32 33 35 37 38 39 41 42 34 45 46 47 89 51 52 53 54 55 57 89 60	523	

2 3	524	References
4 5	525	1 Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in
7	526	China. <i>Nature</i> 2020; 579 :265–9.
8 9 10 11 12	527 528 529	 Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. <i>The New England Journal of Medicine</i> 2020;382:1199– 207.
13 14 15	530 531	3 Pan Y, Zhang D, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases 2020; 20 :411–2.
16 17 18 19	532 533	4 Huang C, Wang Y, Li X, <i>et al.</i> Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. <i>The Lancet</i> 2020; 395 :497–506.
20 21 22 23	534 535 536	5 Russell TW, Hellewell J, Jarvis CI, <i>et al.</i> Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. <i>Eurosurveillance</i> 2020; 25 :2000256.
24 25 26 27	537 538	6 Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. <i>Jama</i> 2020.
28 29 30 31	539 540 541	7 Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Science China Life Sciences 2020;:1–6.
32 33 34 35 36	542 543 544	8 Ma S, Zhang J, Zeng M, <i>et al.</i> Epidemiological parameters of coronavirus disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven countries. <i>medRxiv</i> 2020.
37 38 39 40	545 546	9 Rothe C, Schunk M, Sothmann P, <i>et al.</i> Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. <i>New England Journal of Medicine</i> 2020; 382 :970–1.
40 41 42 43	547 548	10 Bai Y, Yao L, Wei T, <i>et al.</i> Presumed asymptomatic carrier transmission of COVID-19. Jama 2020.
44 45 46 47 48	549 550 551	11 Anderson RM, Heesterbeek H, Klinkenberg D, <i>et al.</i> How will country-based mitigation measures influence the course of the COVID-19 epidemic? <i>The Lancet</i> 2020; 395 :931–4.
49 50 51	552 553	12 Casey M, Collins A, Hunt K, <i>et al.</i> Pre-symptomatic transmission of SARS-CoV-2 Infection. 2020.
52 53 54 55	554 555 556	13 McEvoy D, Collins A, Byrne AW, <i>et al.</i> The relative infectiousness of asymptomatic versus symptomatic infected persons with COVID-19 – A review of data available until 8 th April 2020. 2020.
57 58 59 60	557 558	14 Davies NG, Klepac P, Liu Y, <i>et al.</i> Age-dependent effects in the transmission and control of COVID-19 epidemics. <i>medRxiv</i> 2020.

1 ว		
2	550	15 Davies NG Kucharski AL Eggo RM <i>et al.</i> The effect of non-pharmaceutical
4	560	interventions on COVID-19 cases deaths and demand for hospital services in the LIK. a
5	561	modelling study. <i>medRxiv</i> 2020.
7	501	
8	562	16 HIQA. Evidence summary for COVID-19 viral load over course of infection. Health
9	563	Information and Quality Authority, Ireland. Access date: 1st April 2020.
10	564	https://www.hiqa.ie/reports-and-publications/health-technology-assessment/evidence-
12	565	summary-covid-19-viral-load-over (accessed 1 Apr 2020).
13		
14	566	17 HIQA. Evidence summary for asymptomatic transmission of COVID-19. Health
15 16	567	Information and Quality Authority, Ireland. Access date: 1st April 2020.
17	568	nttps://www.niqa.ie/reports-and-publications/nealth-technology-assessment/evidence-
18	569	summary-asymptomatic-transmission
19 20	570	18 HIOA. Protocol for evidence synthesis support - COVID-19. Health Information and
20	571	Quality Authority, Ireland, Access date: 1st April 2020.
22	572	https://www.higa.ie/sites/default/files/2020-04/Protocol-for-HIQA-COVID-19-evidence-
23	573	synthesis-support 1-2.pdf.pdf
24 25		
26	574	19 Munn Z, Peters MD, Stern C, <i>et al</i> . Systematic review or scoping review? Guidance
27	575	for authors when choosing between a systematic or scoping review approach. BMC
28	576	medical research methodology 2018; 18 :143.
29		
31	577	20 Tricco AC, Langlois EV, Straus SE. <i>Rapid reviews to strengthen health policy and</i>
32	578	systems: a practical guide. World Health Organization Geneva 2017.
33	579	21 Wan X Wang W Liu L et al. Estimating the sample mean and standard deviation
34 35	580	from the sample size median range and/or interquartile range <i>BMC medical research</i>
36	581	methodology 2014: 14 :135.
37	001	
38	582	22 Higgins JPT, Wells GA. Cochrane handbook for systematic reviews of interventions.
39 40	583	2011.
41		
42	584	23 Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis.
43	585	Statistics in medicine 2001; 20 :825–40.
44 45	гос	24 Higgins ID Thompson SC Docks II at al Mossuring inconsistency in moto analyses
46	580 597	24 Higgins JP, mompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. RMI: British Medical Journal 2002: 227 :557
47	507	Bivis. Birlish wealcu southul 2003, 327 .337.
48 ⊿o	588	25 Higgins JP. Thompson SG. Controlling the risk of spurious findings from
49 50	589	meta-regression. Statistics in medicine 2004: 23 :1663–82.
51		
52	590	26 Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission
53 54	591	and mitigation strategies in the population of Ontario, Canada. CMAJ: Canadian Medical
55	592	Association Journal= Journal de L'association Medicale Canadienne 2020.
56		
57	593	LI R, Pei S, Chen B, <i>et al.</i> Substantial undocumented infection facilitates the rapid
58 59	594	dissemination of novel coronavirus (SARS-CoV2). Science 2020.
60		

Hoehl S, Rabenau H, Berger A, et al. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. New England Journal of Medicine 2020;382:1278-80. He X, Lau EH, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine 2020;:1–4. Wei WE, Li Z, Chiew CJ, et al. Presymptomatic Transmission of SARS-CoV-2-Singapore, January 23–March 16, 2020. Morbidity and Mortality Weekly Report 2020;69:411. Tindale L, Wallinga J, Coombe M, et al. Transmission interval estimates suggest pre-symptomatic spread of COVID-19. https://www medrxiv org/content/101101/202003 0320029983 v1 2020. Peak CM, Kahn R, Grad YH, et al. Modeling the Comparative Impact of Individual Quarantine vs. Active Monitoring of Contacts for the Mitigation of COVID-19. medRxiv 2020. Cheng H-Y, Jian S-W, Liu D-P, et al. High transmissibility of COVID-19 near symptom onset. medRxiv 2020. Linton NM, Kobayashi T, Yang Y, et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. Journal of clinical medicine 2020;9:538. Kramer M, Pigott D, Xu B, et al. Epidemiological data from the nCoV-2019 Outbreak: Early Descriptions from Publicly Available Data. 2020. Xu B, Gutierrez B, Mekaru S, et al. Epidemiological data from the COVID-19 outbreak, real-time case information. Scientific data 2020;7:1-6. Zhu H. Transmission Dynamics and Control Methodology of COVID-19: a Modeling Study. medRxiv 2020;:2020.03.29.20047118. doi:10.1101/2020.03.29.20047118 Piccolomiini EL, Zama F. Monitoring Italian COVID-19 spread by an adaptive SEIRD model. medRxiv 2020. Tuite AR, Greer AL, Fisman DN. COVID-2019 Transmission Model 10-March-2020. University of Toronto Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. New England Journal of Medicine 2020;382. Kam K, Yung CF, Cui L, et al. A Well Infant with Coronavirus Disease 2019 with High Viral Load. Clinical Infectious Diseases 2020. Kim JY, Ko J-H, Kim Y, et al. Viral load kinetics of SARS-CoV-2 infection in first two patients in Korea. Journal of Korean medical science 2019;35.

1		
2		
4	629	43 Kujawski SA, Wong KK, Collins JP, <i>et al.</i> First 12 patients with coronavirus disease
5	630	2019 (COVID-19) in the United States. <i>medRxiv</i> 2020.
6 7	631	44 Lim J. Jeon S. Shin H-Y. <i>et al.</i> Case of the index patient who caused tertiary
8	632	transmission of Coronavirus disease 2019 in Korea: the application of lopinavir/ritonavir
9	633	for the treatment of COVID-19 pneumonia monitored by guantitative RT-PCR. Journal of
10	634	Korean Medical Science 2020; 35 .
12		
13	635	45 Marchand-Senécal X, Kozak R, Mubareka S, et al. Diagnosis and Management of First
14 15	636	Case of COVID-19 in Canada: Lessons applied from SARS. <i>Clinical Infectious Diseases</i> 2020.
16	637	46 Tan LV, Ngoc NM, That BTT, <i>et al.</i> Duration of viral detection in throat and rectum of
17 18	638	a patient with COVID-19. 2020.
19 20	639	47 Thevaraian I. Nguyen TH. Koutsakos M. <i>et al.</i> Breadth of concomitant immune
20 21	640	responses prior to patient recovery: a case report of non-severe COVID-19. <i>Nature</i>
22	641	<i>Medicine</i> 2020: 26 :453–5.
23		
24 25	642	48 To KK, Tsang OT, Chik-Yan YC, <i>et al.</i> Consistent detection of 2019 novel coronavirus
25 26	643	in saliva. Clinical infectious diseases: an official publication of the Infectious Diseases
27 28	644	Society of America 2020.
29	645	49 Woelfel R, Corman VM, Guggemos W, <i>et al.</i> Clinical presentation and virological
30	646	assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated
31	647	transmission cluster. <i>medRxiv</i> 2020.
32 33		
34	648	50 Wölfel R, Corman VM, Guggemos W, <i>et al.</i> Virological assessment of hospitalized
35	649	patients with COVID-2019. Nature 2020;:1–10.
36 27	650	E1 Vult Chan C Zhu Z at al. Clinical features and dynamics of viral load in imported and
37 38	651	non-imported nations with COVID-19. International Journal of Infectious Diseases: IIID:
39	652	Official Publication of the International Society for Infectious Diseases 2020
40	052	Official Publication of the International Society for Infectious Diseases 2020.
41 42	653	52 Young BE, Ong SWX, Kalimuddin S, <i>et al.</i> Epidemiologic Features and Clinical Course
42 43	654	of Patients Infected with SARS-CoV-2 in Singapore. JAMA-Journal of the American Medical
44	655	Association 2020.
45		
46 47	656	53 Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens
47 48	657	of infected patients. New England Journal of Medicine 2020; 382 :1177–9.
49		
50	658	54 Cao B, Wang Y, Wen D, <i>et al.</i> A trial of lopinavir–ritonavir in adults hospitalized with
51 52	659	severe Covid-19. New England Journal of Medicine 2020.
52 53	660	EE Chan W. Lan V. Yuan V. at al. Detectable 2010 pCoV/viral PNA in blood is a strong
54	661	indicator for the further clinical severity. Emerging Microhes 9. Infections 2020:0:460-72
55 56	001	maleator for the further childer sevency. Energing where thes & high choirs 2020, 3 .409-75.
50 57	662	56 Goh KJ, Choong MC, Cheong EH, <i>et al.</i> Rapid Progression to Acute Respiratory
58	663	Distress Syndrome: Review of Current Understanding of Critical Illness from COVID-19
59	664	Infection. Ann Acad Med Singapore 2020; 49 :1–9.
60		

2		
3	665	57 Hill KJ, Russell CD, Clifford S, <i>et al.</i> The index case of SARS-CoV-2 in Scotland: a case
4 5	666	report. The Journal of Infection
6	667	58 Liu X Van I M Wan I et al Viral dynamics in mild and sovere cases of COVID 19. The
7	007	Liu f, fail L-IVI, Wall L, et al. Viral uyilatilics in finitu and severe cases of COVID-19. The
0 9	008	Luncet injectious Diseuses
10	669	59 To KK-W. Tsang OT-Y. Leung W-S. et al. Temporal profiles of viral load in posterior
11	670	oronbaryngeal saliya samples and serum antibody responses during infection by SARS-
12	671	CoV 2: an observational cohort study. The Langet Infectious Diseases 2020
13	071	
14 15	672	60 Fang 7, Zhang Y. Hang C. <i>et al.</i> Comparisons of nucleic acid conversion time of SARS-
16	673	CoV-2 of different samples in ICU and non-ICU nations. The Journal of Infection 2020
17	075	
18	674	61 Kam KQ, Yung CF, Cui L, <i>et al.</i> A Well Infant with Coronavirus Disease 2019 (COVID-
19 20	675	19) with High Viral Load. Clinical Infectious Diseases: An Official Publication of the
20 21	676	Infectious Diseases Society of America 2020.
22		
23	677	62 Kimball A, Hatfield KM, Arons M, et al. Asymptomatic and Presymptomatic SARS-
24	678	CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility-King County,
25	679	Washington, March 2020. MMWR Morbidity and mortality weekly report 2020;69.
20 27		
28	680	63 Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests
29	681	epidemic control with digital contact tracing. Science 2020.
30		
31	682	64 Lavezzo E, Franchin E, Ciavarella C, <i>et al.</i> Suppression of COVID-19 outbreak in the
5∠ 33	683	municipality of Vo, Italy. <i>medRxiv</i> 2020.
34	60 A	CE Courde D. The side D. Side E. Start The sector share of the COM/D 40 so the sector
35	684	65 Cereda D, Tirani M, Rovida F, <i>et al.</i> The early phase of the COVID-19 outbreak in
36	685	Lombardy. Italy [published online aneda of print March 20, 2020] arXiv 2020.
3/ 38	686	66 Liao L Ean S. Chen L et al. Enidemiological and clinical characteristics of COVID-19 in
39	687	adolescents and young adults medRxiv 2020
40	087	
41	688	67 Kupferschmidt K. Study claiming new coronavirus can be transmitted by people
42	689	without symptoms was flawed. Science 2020: 3 .
43 44		
45	690	68 Hu F, Chen F, Wang Y, <i>et al.</i> Failed detection of the full-length genome of SARS-CoV-2
46	691	by ultra-deep sequencing from the recovered and discharged patients retested viral PCR
47	692	positive. <i>medRxiv</i> 2020.
48		•
49 50	693	69 Xing Y, Ni W, Wu Q, <i>et al.</i> Prolonged presence of SARS-CoV-2 in feces of pediatric
51	694	patients during the convalescent phase. medRxiv 2020.
52		
53	695	70 Fu R, Gartlehner G, Grant M, <i>et al.</i> Conducting quantitative synthesis when
54 55	696	comparing medical interventions: AHRQ and the Effective Health Care Program. Journal
55 56	697	of clinical epidemiology 2011; 64 :1187–97.
57		
58	698	/1 Zhou F, Yu T, Du R, <i>et al.</i> Clinical course and risk factors for mortality of adult
59	699	inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet
60	700	2020.

1 2		
2 3	701	72 Ferguson N. Laydon D. Nediati Gilani G. <i>et al.</i> Report 9: Impact of non-
4	701	nharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare
5	702	demand 2020
6 7	705	
8	704	73 Cai J. Xu J. Lin D. <i>et al.</i> A Case Series of children with 2019 novel coronavirus
9	705	infection: clinical and epidemiological features. <i>Clinical Infectious Diseases</i> 2020.
10		
11 12	706	74 Cai Q, Huang D, Ou P, et al. COVID-19 in a Designated Infectious Diseases Hospital
12	707	Outside Hubei Province, China. Allergy 2020.
14		
15	708	75 Chen D, Xu W, Lei Z, <i>et al.</i> Recurrence of positive SARS-CoV-2 RNA in COVID-19: A
16	709	case report. International Journal of Infectious Diseases 2020.
18	74.0	76 Change C. C. Change V. J. E. et al. First and of Companying Disease 2010
19	710	Cheng S-C, Chang Y-C, Chiang Y-LF, <i>et al.</i> First case of Coronavirus Disease 2019
20	/11	(COVID-19) pneumonia in Taiwan. <i>Journal of the Formosan Medical Association</i> 2020.
21	712	77 Lee N-Y Li C-W Tsai H-P <i>et al.</i> A case of COVID-19 and pneumonia returning from
22 23	712	Macau in Taiwan: Clinical course and anti-SARS-CoV-2 lgG dynamic <i>Journal</i> of
24	714	Microbiology Immunology and Infection 2020
25	, 14	
26	715	78 Ling Y, Xu S-B, Lin Y-X, <i>et al.</i> Persistence and clearance of viral RNA in 2019 novel
27 28	716	coronavirus disease rehabilitation patients. Chinese medical journal 2020.
29		
30	717	79 Liu F, Xu A, Zhang Y, <i>et al.</i> Patients of COVID-19 may benefit from sustained
31	718	lopinavir-combined regimen and the increase of eosinophil may predict the outcome of
32	719	COVID-19 progression. International Journal of Infectious Diseases 2020.
34		
35	720	80 Qu YM, Kang EM, Cong HY. Positive result of Sars-Cov-2 in sputum from a cured
36	721	patient with COVID-19. Travel Medicine and Infectious Disease 2020;:101619–101619.
37 20	722	81 Vuan L Kou S. Liang V. at al. Clinical Characteristics on 25 Discharged Patients with
39	722	COVID-19 Virus Returning medRviv 2020. 2020 03 06 20031377
40	723	doi:10 1101/2020 03 06 20031377
41	/ 24	doi.10.1101/2020.03.00.200313//
42	725	82 Chen J. Qi T. Liu L. <i>et al.</i> Clinical progression of patients with COVID-19 in Shanghai.
45 44	726	China. Journal of Infection 2020.
45		
46	727	83 Le HT, Nguyen LV, Tran DM, et al. The first infant case of COVID-19 acquired from a
47	728	secondary transmission in Vietnam. The Lancet Child & Adolescent Health 2020.
48 49		
50	729	84 Qiu H, Wu J, Hong L, <i>et al.</i> Clinical and epidemiological features of 36 children with
51	730	coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study.
52	731	The Lancet Infectious Diseases 2020.
53 54	700	QE Muy Cup C Tong L of al Drolonged processor of CADS Cold Datas DNA in Second
55	/32	op vvu Y, Guo C, Tang L, <i>et ul.</i> Prolonged presence of SARS-COV-2 Viral KNA in faecal
56	/33	samples. The Lancel Gastroenterology & Hepatology 2020; 5 :434–5.
57	734	86 Lourenco L Paton R. Ghafari M. <i>et al.</i> Fundamental principles of epidemic spread
58 50	, J.+ 735	highlight the immediate need for large-scale serological surveys to assess the stage of the
60	736	SARS-CoV-2 epidemic. <i>medRxiv</i> 2020

Tables and figures

Figure 1: Simulation of the parameter distribution inferred for duration infectious period for asymptomatic cases (T2) inferred infectious period for Davies et al. (2020a), grey/blue curve, Davies et al. (2020b) pink curve [model priors]. Green curve: Ma et al. (2020). Histogram is the distribution of asymptomatic cases to two clear tests reported by Hu et al. (2020). Reference lines are point estimates reported from Zhou et al. (2020), Li et al. (2020), and Tuite et al. (2020a & b).[7,8,14,15,26,27,39,71]

Figure 2: Simulation of the parameter distribution used for T3 (the duration of the pre-symptomatic infectious period for those infected individuals who subsequently develop symptoms). Curves represent simulated approximations of distributions, given information provided from primary literature. Vertical lines represent point estimates where distributions could not be inferred (see table 2). 1. Peak et al. [posterior]; 2. Davies et al. 2020b [prior]; 3. Rothe et al. 2020; 4. He et al. 2020; 5. Davies et al. 2020a [prior]; 6. Wei et al. 2020. [9,14,15,29,30,32]

- Figure 3: Forest plot of the mean duration from onset of symptoms to death or recovery (T5) based on virological studies
- Figure 4: Frequency distribution of T5, time from onset of symptoms to recovery (here hospital discharge or death), using patient level raw data from Kraemer et al. ([35,36]; pink bars), Linton et al. ([34]; purple bars) and Tindale et al. ([31]; green bars). Blue solid line is the kernel density of the aggregated dataset Dashed lines represent the mean and 95%CI from a random effects regression model.
- Figure 5: Composite inferred model for cycle threshold (CT) value changes from serial RT-PCR testing for SARS-COV2; currently uncertain whether peak viral load typically occurs prior to, on, or post-symptom onset (primary literature informing this model includes [29,50,53,59]).

Table 1: Reported infectious period (IP) for asymptomatic cases (T5 parameter) from virological
studies where serial diagnostic tests were undertaken to infer IP; tracking studies where IP is
inferred from contact tracing; modelling studies where IP is reported as a prior (assumed parameter

766 value) or an posterior estimate.

8								
9 10 11 12	No.	Study	Countries	Parameter (days)	n	Central tendency reported	Variati on (days; inclus.)	Comment
13	Virolo	gical studies						
14 15 16 17 18 19 20 21 22 23 24	[71]	Zhou et al. (2020)	China	11 days	1	Max		This study serially swabbed and tested symptomatic (17) and asymptomatic (1) cases via RTPCR. The single asymptomatic case tested positive up to 11 days post contact with an infected patient (presumed point of exposure).
24 25 26 27 28 29 30 31 32 22	[7]	Hu et al. (2020)	China	9.5 days	24	Median	1-21 range	Serial testing. Period between "onset" (where onset relates to first positive test) and clearance, adjudged via two negative RTPCR tests, deemed by the authors to be the 'communicable period'. IQR: 3.5-13
33 34	Tracki	ng studies						
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	[8]	Ma et al. (2020)	China, Germany, Japan, Singapore, South Korea, Malaysia, Vietnam	7.25 days*	49	Mean	5.91- 8.69 (95%Cl)	*Ma et al. (2020) does not report infectious period for asymptomatic cases explicitly within their paper. The authors estimated the infectious period as the upper estimated latent period minus the serial interval, using a dataset of 1155 cases from several countries (latent period was estimated with 11 infector-infectee pairs; serial interval was estimated from 689 infector-infectee pairs). Ma et al. (2020) reported a mean upper limit of latent period of 2.52 days; the mean serial interval for asymptomatic cases (using date of diagnosis for onset) was estimated to be 9.77
59	[7]	Hu et al.	China		3		4-9	(94%CI: 8.43, 11.21). Cluster of infection within a
υU								

1 2							
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 32 33 34 35	(2020)				range	family, where the primary case was asymptomatic. The transmissions to secondary cases occurred over a period 4-9 days post the presumed point of exposure for the primary case.
11	Modellir	g studies					
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	[27]	Li et al. (2020)	China	3.5* [posterior from a model estimating duration for undocumen ted cases]	Median	3.19- 3.78 95%Cl	Li et al. (2020) do not explicitly attempt to model asymptomatic cases, or their infectious duration. Instead the population infected is divided into 'documented' and 'undocumented'. Documented were all cases where patients had symptoms severe enough to be confirmed infected; all other cases were considered undocumented. Therefore, this estimate represents asymptomatic and 'mild' cases. The 95%Cl around the median infectious period estimate was 3.19-3.78
31 32 33 34 35 36 37	[26,39]	Tuite et al. (2020a &b)	Canada	6-6.5 [Prior]	[Fixed parameter within a deterministi c model]		Mathematical model [deterministic], with a fixed parameter estimate of 6 or 6.5 days. Important to note that duration for 'mild' was equal to severe cases.
 38 39 40 41 42 43 44 45 46 47 42 	[14]	Davies et al. (2020) (a)	UK	7 days [Prior]	Mean		Model with asymptomatic infection compartment. Modelled with a gamma distribution, beta 1.4; alpha 5. Despite, the subclinical aspect of this parameter, it could be considered analogous to total infectious period without intervention.
48 49 50 51 52 53 54 55 56 57	[15]	Davies et al. (2020) (b)	UK	5 days [Prior]	Mean		Model with asymptomatic infection compartment. Modelled with a gamma distribution, k=4. Authors: "Assumed to be the same duration as total infectious period for clinical cases, including preclinical transmission"
59 60	767						

Table 2: Reported infectious period (IP) for pre-symptomatic cases (T3 parameter) from virological
studies where serial diagnostic tests were undertaken to infer IP; tracking studies where IP is
inferred from contact tracing; modelling studies where IP is reported as a prior (assumed parameter
value) or an posterior estimate.

8											
9 10 11		Study	Location	Parameter (days)	Central tendency reported	Variation (days; inclus.)	Comment				
12		Virological studies									
13 14 15 16 17 18 19	[3]	Pan et al. (2020)	Beijing, China	1	Median		Case study of two individuals tracked due to exposure to an infected patient was serially tested prior to onset of symptoms.				
 20 21 22 23 24 25 26 27 28 29 20 	[28]	Hoehl et al. (2020)	Flight from Wuhan to Germany	1	Median		Case study of serially tested at risk cohort flying from Wuhan to Germany. Two patients were asymptomatic test positive; additionally virus isolation was achieved, indicating potential infectiousness.				
20 21		Tracking studi	es		1	1					
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	[4]	Huang et al. (2020)	Nanjing, China	4	Median	3-5 range	Follow-up tracing case study cluster of infection within a family demonstrating pre- symptomatic infection (n=10)				
	[9]	Rothe et al. (2020)	Germany	2	Median	1-3 range	Tracing case study of a cluster of infections whereby presymptomatic transmission occurred (n=3).				
	[29]	He et al. (2020)	Vietnam, Malaysia, Japan, China, Taiwan, USA, Singapore	2.3	Mean	95% CI, 0.8–3.0	Tracing paper infector- infectee pairs. Estimated from serial interval and incubation periods. N=77				
 49 50 51 52 53 54 55 56 57 58 59 60 	[30]	Wei et al. (2020)	Singapore	2.5	Median	2-3 (IQR)	Tracing study investigating pre- symptomatic infections from primary cases to secondary cases in 7 clusters. N=8 primary cases. T3 estimated as the min. days between transmission period (TP) and primary case				

						symptom onset, when T				
						straddled >1 day. Range 2-6 days.				
	Modelling studies									
[32]	Peak et al. (2020)	Massachusetts	0.8 [estimate]	Mean	-0.29-1.98 95% CI*	Modelling paper estimated under two scenarios – a serial interval of 4.8 days or 7.5 days. Under scenario one, the model estimated a period of pre-symptomatic transmission (median: 0.71). * the lower range was fixed at zero as the model allowed for no pre-symptomatic infectious case.				
[37]	Zhu et al. (2020)	Wuhan, China	1.0 [estimate]	Mean		Modelling paper. Mode estimated point value – This is a model derived value				
[14]	Davies et al. (2020) (a)	UK	2.4 [prior]	Mean		Modelling paper. Gamma distribution; k=5.				
[15]	Davies et al. (2020) (b)	UK	1.5 [prior]	Mean		Modelling paper. Gamma distribution: k=				
[26,39]	Tuite et al. (2020a & b)	Canada	0.5, 1 [prior]	Fixed		Modelling paper. Fixed parameter within a deterministic model.				
[72]	Ferguson et al. (2020)	UK	0.5 [prior]	Fixed		Modelling paper. Fixed parameter within a this model, whereby infectiousness was assumed to begin 12 hours become symptoms.				
[31]	Tindale et al. (2020)	Tianjin, China, and Singapore	2.9-2.6 [estimate]	Mean	1.2-8.2 mean range, depending on early or late cases, or whether in Tianjin, Singapore	Statistical modelling study estimating period pre-symptomatic transmission inferred from estimates of serial interval and incubation periods for populations in Tianjin and Singapore (n=228).				
772										
773										

Table 3: Reported infectious period (IP) for post-symptomatic cases (T5 parameter) from virological
studies where serial diagnostic tests were undertaken to infer IP [onset to ≥2 tests]; tracking studies
where IP is inferred from patient histories from onset to recovery or death; modelling studies where

777 IP is reported as a prior (assumed parameter value) or an posterior estimate.

No.	Study	Location	Parameter (days)	Central tendenc y reporte d	Variation (days; inclus.)	Comment	
	Virological stu	udies					
[73]	Cai et al. 2020 (a)	China	12	Median	6-22 range	Serial testing study of n=10 mild cases RT-PCR confirmed in children. IQR: 8-15 days	
74]	Cai et al. 2020 (b)	China	14	Median	9-19 (IQR)	Serial testing study with n=298 confirmed (RT-PCR) cases treated within hospital setting	
75]	Chen et al.(2020)	China	12	Max.		Single case study for a patient admitted to hospital where RT-PCR serial testing was undertaken. Patient had an additional positive test at day 17, but subsequently tested negative	
[76]	Cheng et al. (2020)	China	21	Max.		Case study of single patient serially tested by RT-PCR	
7]	Hu et al. (2020)	China	12	Median	12-14 (IQR)	Serial testing study of patients who were first tested (qRT-PCR) when asymptomatic; this subset subsequently developed symptoms (n=5).	
42]	Kim et al. (2020)	Korea	15.5	Median	14-17 (range)	Serial testing of two confirmed cases via RT-PCR. Viral load highest during early phase of infection (day 3-5).	
[43]	Kujawski et al. (2020)	USA	26	Max.		Serial testing of two confirmed cases via RT-PCR. Mild to moderate symptoms.	
[77]	Lee et al. (2020)	Taiwan	20	Max.		Serial testing (RT-PCR) of a single patient hospitalised presenting with pneumonia	
[44]	Lim et al. (2020)	South Korea	16	Max.		Serial testing (RT-PCR) of a single patient hospitalised presenting with pneumonia. Two clear tests day 11, virus	
1 2							
--	------	--------------------------------------	-----------	------	--------	--------------	--
3 4							detectible again up to day 16.
5 6 7 8 9 10	[78]	Ling et al. (2020)	China	9.5	Median	2-22 (range)	Serial testing of two confirmed cases via RT-PCR. n=66. IQR: 6-11 days, oropharyngeal sampling. Mix of adult and children.
11 12 13 14 15 16	[79]	Liu et al. (2020)	China	11	Median	7-18 range	Serial testing of two confirmed cases via RT-PCR. n=10. 10-13 (IQR); adults, mild, moderate, and severe cases.
17 18 19	[45]	Marchand- Senéca et al. (2020)	Canada	23	Max		Serial testing (RT-PCR) of a single patient hospitalised presenting with pneumonia.
20 21 22 23 24	[3]	Pan et al. (2020)	China	10	Median	8-12 range	Serial testing (RT-PCR) of two patients hospitalised. Viral loads peaked days 5-6 post-onset.
25 26	[80]	Qu et al. (2020)	China	22	Max		Serial testing (RT-PCR) of a single patient hospitalised
27 28 29	[46]	Tan et al. (2020)	Vietnam	16	Max		Serial testing (RT-PCR) of a single patient hospitalised; throat sample.
30 31 32 33 34 35 36	[47]	Thevarajan et al. (2020)	Australia	7	Max		Serial testing (RT-PCR) of a single patient hospitalised; throat sample. Highest viral load on first test at day 4 in nasopharyngeal; day 6 for sputum.
37 38 39 40 41 42 43	[69]	Xing et al.(2020)	China	14	Median		Serial testing (RT-PCR) of a three (children) patients hospitalised. Mild-moderate infecting. Positive viral samples from faeces up to 4 weeks post-symptoms.
44 45 46 47 48 49	[52]	Young et al. (2020)	Singapore	12.5	Median		Serial testing (RT-PCR) of 18 patients hospitalised. Adults. Viral load peaked over testing series at day 4 since onset.
48 49 50 51 52 53	[81]	Yuan et al. (2020)	China	6	Median	4-10 (IQR)	Serial testing (RT-PCR) of 25 patients hospitalised. Children and adults. "Non- severe" cases.
54 55 56 57 58 59 60	[71]	Zhou et al. (2020)	China	20	Median	16-23 IQR	Serial testing (RT-PCR) of 191 patients hospitalised in two hospitals. Adults. 54 died. Survivors (n=137); Median (IQR) 20.0 days (17.0–24.0); Non-survivors

1 2							
3 4 5 6 7 8							(n=54); Median (IQR) 18.5 days (15.0–22.0); Shedding continued until death. Inferred shedding period; 8- 37 days.
9 10 11 12 13 14	[82]	Chen J. et al. (2020)	China	11	Median	10-12 (95%CI)	Serial testing (RT-PCR) of 242 patients hospitalised. Adults. 90% mild/asymptomatic; 10% severe/critical.
15 16 17 18	[60]	Fang et al. (2020)	China	15.7	Mean	6.7 (sd)	Serial testing (RT-PCR) of 24 non-ICU patients hospitalised. Adults. Nasal samples.
19 20 21	[60]	Fang et al. (2020)	China	22.3	Mean	3.6 (sd)	Serial testing (RT-PCR) of 8 ICU patients hospitalised. Adults. Nasal samples.
22 23 24 25 26 27	[57]	Hill et al. (2020)	Scotland	9	Max.		Serial testing (RT-PCR) of a single patient (adult) hospitalised; nasal sample [throat sample: 6 days]. Mild.
28 29 30	[83]	Le et al. (2020)	Vietnam	12	Max.		Serial testing (RT-PCR) of a single patient (infant) hospitalised. Mild.
31 32 33 34 35 36 37	[58]	Liu et al. (2020)	China	10	Max.		Serial testing (RT-PCR) of a patients hospitalised. Adults. Mixed Mild/severe cases. N=76. 90% "early viral clearance" within 10days
38 39 40 41 42	[84]	Qiu et al. (2020)	China	10	Mean	7-22 range	Serial testing (RT-PCR) of a patients hospitalised. Children. N=36. Mild and moderate cases.
43 44 45 46 47 48 49 50	[59]	To et al. (2020)	Hong Kong	25	Max.	2	Serial testing (RT-PCR) of a patients hospitalised. N=7. Seven patients reported viral detection >20 days; viral load peaked during first week post-onset of symptoms.
50 51 52 53 54	[85]	Wu et al.	China	16.1	Mean	6.7 (sd)	Serial testing (RT-PCR) of patients hospitalised. Adults. N=74. Severe and non-severe cases.
55 52		Tracking studi	es	1			
56 57 58	[31]	Tindale et al. (2020)	Singapore	18	Median	9-33 range	Time from onset to discharge; range 9-33; n=53
59 60	[35,36]	Kraemer et al. (2020a);	Various	19	Median	3-37 range	Time from onset to discharge; Range: 3-37;

1 2							
- 3 4 5 6 7		[later published as: Xu et al. 2020]					n=70
, 8 9	[34]	Linton et al. (2020)	Wuhan, China	13	Median	6-41 range	Time from onset to death; range 6-41
10 11	[35,36]	Kraemer et al. (2020b)	Japan and China	19.25	Mean	12-24 range	Time from onset to death; n=4
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	[49,50]	Wölfel et al. (2020)	Germany	3-8 days	absolute	3-8 range	Tracked infection in mild cases in Germany, undertaking viral isolation studies to assess active replication across a number of samples sites (upper respiratory tract, blood, urine, faeces) over the duration of infection. 5% isolation success was achieved up to 9.78 (95% CI: 8.45-21.78) days post onset; n=9
20	778						11-5
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 7 48 9 51 52 34 55 56 57 89 60	,,,,						

Table 4: Reported infectious period (IP) for symptomatic cases (T3+T5 parameter) from virological
 studies where serial diagnostic tests were undertaken to infer IP [exposure to ≥2 tests]; tracking
 studies where IP is inferred from patient histories from onset to recovery or death; modelling studies

783 where IP is reported as a prior (assumed parameter value) or an posterior estimate.

No.	Study	Location	Parameter (days)	Central tendency reported	Variation (days; inclus.)	Comment
	Tracking stud	es				
[29]	He et al. (2020)	Vietnam, Malaysia, Japan, China, Taiwan, USA, Singapore	9.3 days	Mean	7.8-10 (95%CI*)	The paper reported on 77 infector-infectee pairs which were sequential/serially tested, using publicly available data. Viral dynamics (Guangzhou, China; N=94) interpreted by the authors suggested an infectious period starting 2.3 (95% Cl, 0.8–3.0 days) days prior to symptoms, peaking 0.7 days (95% Cl, $-0.2-2.0$ days), continuing up to 7 days from onset. * Cl from pre-symptom infectious period only.
[8]	Ma et al. (2020)	Various	~5 days	Median	Range 0- 24	The authors estimated the infectious period as latent minus the serial interval, using a dataset of 1155 cases. Range 0-24; IQR: 2-9; calculated from data presented within the paper.
	Modelling stu	dies				
[27]	Li et al. (2020)	China	3.45 days [posterior estimated from model for documented cases]	median	95%CI for the mean: 3.19, 3.72	Mathematical model. Priors for <u>mean</u> documented infectious period was a flat [uniform] distribution 2-5. 'Documented' cases were defined as those severe enough to be confirmed. This corralling of the infectious period relative to other

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

						studies should take into account that the distribution is used for the central tendency, not the whole distribution.
[26,39]	Tuite et al. (a, b) (2020)	Canada	6-6.5 days [prior; fixed parameter within a deterministic model]	Fixed parameter		Mathematical model [deterministic], with a fixed parameter estimate of 6.5 days (a) and 6 days (b), respectively. Important to note that duration for 'mild' was equal to severe cases.
[86]	Lourenco et al. (2020)	UK	~3-5 days [posterior; approximate depending on scenario tested]	mean	95%ci of 3-6 days	Mathematical model. The <u>prior</u> used was given a Gaussian distribution (normal curve); mean 4.5; SD 1; approximate 95%ci of 3-6 days. The reported posterior of this parameter was presented graphically and depended on RO and proportion at risk. Depending on the scenarios tested, mean duration of infectiousness appeared to vary from 3-5 days.
[37]	Zhu et al. (2020)	Wuhan, China	12.5 days [posterior estimated from model]	Mean	11.4 variance	Mathematical model. The parameter was estimated using a Weibull distribution. The prior for this parameter was 10 days. The posterior variance around the mean was 11.4, and therefore the distribution had a long tail. This study was a modelling [SEIR extended model].
[15]	Davies et al. (b) (2020)	UK	7 days [Prior]	Mean		Model with asymptomatic infection compartment. Modelled with a

2						
5 4 5 6 7 8 9 10 11 12 13						gamma distribution, beta 1.4; alpha 5. Despite, the subclinical aspect of this parameter, it could be considered analogous to total infectious period without intervention.
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	[14]	Davies et al. (b) (2020)	UK	5 days [Prior]	Mean	Model with asymptomatic infection compartment. Modelled with a gamma distribution, k=4. Authors: "Assumed to be the same duration as total infectious period for clinical cases, including preclinical transmission"
28 29 30 31 32 33 34	[38]	Piccolomini and Zama (2020)	Italy	20 days [Prior]	Fixed	Parameter estimate assumed for the infectious period within an SEIRD model, fitted to data from the epidemic in Italy.
35 78 36 78 37 78 38 39 40 41 42 43 44 45 45 46 47 48 49 50 51 52 53 54 55 56 57 58	4 5					
58 59 60						

Figure 1: Simulation of the parameter distribution inferred for duration infectious period for asymptomatic cases (T2) inferred infectious period

90x90mm (300 x 300 DPI)

Figure 2: Simulation of the parameter distribution used for T3 (the duration of the pre-symptomatic infectious period for those infected individuals who subsequently develop symptoms). Curves represent simulated approximations of distributions, given information provided from primary literature.

90x90mm (300 x 300 DPI)

BMJ Open

Figure 4: Frequency distribution of T5, time from onset of symptoms to recovery (here hospital discharge or death), using patient level raw data

90x90mm (300 x 300 DPI)

Figure 5: Composite inferred model for cycle threshold (CT) value changes from serial RT-PCR testing for SARS-COV2; currently uncertain whether peak viral load typically occurs prior to, on, or post-symptom onset

BMJ Open: first published as 10.1136/bmjopen-2020-039856 on 5 August 2020. Downloaded from http://bmjopen.bmj.com/ on April 7, 2024 by guest. Protected by copyright.

135x90mm (300 x 300 DPI)

1 Supplementary material 1

Figure S1: Conceptual model of the key temporal parameters impacting COVID-19 infection

4 progression over time. T1: Latent period; T2: Asymptomatic infectious period; T3: Pre-

5 symptomatic infectious period; T4: Symptom onset to diagnosis [self-isolation] or

6 hospitalisation; T5: Symptom onset to removed [death or recovery]

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	49	of	6	1
------	----	----	---	---

3 4

Supplementary material 2:Data for meta-analysis

e 49 of 61								BMJ	Open					6/bmjopen-2020							
26	Supplementary	material 2	:Data f	or meta-an	alysis									-039856							
	paper	country	ct	ct_type	range	median	iqr	min	max	first_c	qt t	third_qt	n	on mean თ Al	sd	se	2	severity	sev_bin	kid_cat	
	Cai et al. (2020a)	China	12	Median	range	12	9-19	6	2	2	8	15	10	uggist 2		6	2	e mild mild-	0	1	L
	Cai et al. (2020b)	China	14	Median		14	(IQR)				9	19	298	2012		7	C) severe	1	2	2
	Chen et al (2020)	China	12	Max.									1	1127		0	C)		2	2
	Chen J. et al. (2020) Cheng et al.	China	11	Median	10-12 (95%Cl)	11							242	ownl g ade		8	3	mild- severe	1	2	2
	(2020)	China	21	Max.									1	24		0	C) severe	1	2	2
	Fang et al. (2020a) Fang et al.	China	16	Mean	6.7 (sd)								24	m 19ttp:		7	1	mild- moderate	0	2	2
	(2020b)	China	22	Mean	3.6 (sd)								8	22		4	1	severe	1	2	2
	Hill et al. (2020)	Scotland	9	Max.			12-14						1	njøpen		0	C) mild	0	2	2
	Hu et al. (2020)	China	12	Median	14-17	12	(IQR)				.2	14	5	. <mark>ga</mark> nj.o		2	1	. mild mild-	0	2	2
	Kim et al. (2020) Kujawski et al.	Korea	16	Median	(range)	16		14	1	7			2	0 19 0		3	2	2 moderate mild-	0	2	2
	(2020)	USA	26	Max.									1	26		0	C) moderate	0	2	2
	Le et al. (2020)	Vietnam	12	Max.									1	ı T		0	C) mild	0	1	L
	Lee et al. (2020)	Taiwan South	20	Max.									1	7, 2 024		0	C) severe	1	2	2
	Lim et al. (2020)	Korea	16	Max.	ז ₋ יז								1	- 婚y g		0	C)		2	2
	Ling et al. (2020)	China	10	Median	(range)	10		2	2	2	6	11	66	upgat. F		4	C) mild-		1	L
	Liu et al. (2020)	China	11	Median	range	11		7	1	8 1	.0	13	10	or <u>o</u> tect		3	1	. severe	1	2	2
	Liu et al. (2020)	China	10	Max.									76	100 100				severe	1	2	2
	Marchand- SenŽca et al.	Canada	23	Max									1	by com		0	ſ)			
			_5										-	ېyright.		-					

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

									BMJ Ope	en				6/bmjoper				Pag	ge 50 of 61
1 2 3 4 5		(2020)												ר-2020-039856					
6		Pan et al. (2020)	China	10	Median	8-12 range	10		8	12			2	on ₁§7	3	2			
7		1 un et ul. (2020)	China	10	Wieddin	7-22	10		0	12			2	βAu	5	2	mild-		
8		Qiu et al. (2020)	China	10	Mean	range			7	22			36		4	1	moderate	0	1
9 10		Qu et al. (2020)	China	22	Max								1	23	0	0			
11		Tan et al. (2020)	Vietnam	16	Max								1	201	0	0	severe	1	
12 13		Thevarajan et al. (2020)	Australia	7	Max								1	Downlo	0	0	mild- moderate	0	
14 15 16		To et al. (2020)	Hong Kong	25	Max.								7	badeq f	0	0	mild- severe	1	2
10 17 18		Wu et al. (2020)	China	16	Mean	6.7 (sd)							74	romghtt	7	1	mild- severe	1	2
19 20		Xing et al (2020) Young et al	China	14	Median		14						3	o://bmj			mild- moderate mild-	0	1
21 22 22		(2020)	Singapore	12	Median		12	4-10	1	24			18	opgen.br	6	3	moderate mild-	0	2
23 24 25		Yuan et al. (2020)	China	6	Median		6	(IQR) 16-23			4	10	25	nţicom	5	1	moderate	0	1
26 27	27	Zhou et al. (2020)	China	20	Median		20	IQR			16	23	191	/gn Ap	5	0	severe	1	2
28 29 30	28													oril 7, 2024					
31 32														۱ by					
33														gues					
34														st. F					
35														Prot					
30 27														ecte					
38														d bé					
39														у с					
40														ору					
41														righ					
42														ıt.					
43					For	peer review of	onlv - ł	nttp://bmi	open.br	ni.com/s	site/about/	auidelii/	nes.xhtm						
44					. 51				. 1	,,.		5							
45																			
46																			

Page 5	51 of 61			BMJ Open 30 er							
1 2 3 4	29	Supplement	ary material 3: Data for time t	co recovery or	death			1-2020-03985			
5		study	overall_time_disc_death	death	discharge	xb_t5	upp95	low95 ବ୍			
6 7		kraemer	20	0	1		15.13663	20.99411 🦉			
7 8		kraemer	16	0	1	18.06537	15.13663	20.99411 هَ			
9		kraemer	24	0	1	18.06537	15.13663	20.99411 ^{kr}			
10		kraemer	24	0	1	18.06537	15.13663	20.99411 🕅			
11		kraemer	25	0	1	18.06537	15.13663	20.99411			
12		kraemer	22	0	1	18.06537	15.13663	20.99411 🛓			
14		kraemer	28	0	1	18.06537	15.13663	20.99411 📓			
15		kraemer	16	0	1	18.06537	15.13663	20.99411 🖉			
16 17		kraemer	25	0	1	18.06537	15.13663	20.99411 🖣			
17		kraemer	37	0		18.06537	15.13663	20.99411 🚆			
19		kraemer	15	0	1	18.06537	15.13663	20.99411 🟅			
20		kraemer	14	0	1	18.06537	15.13663	20.99411 💐			
21 22		kraemer	26	0	1	18.06537	15.13663	20.99411 🖉			
22		kraemer	17	0	1	18.06537	15.13663	20.99411 🔤			
24		kraemer	20	0	1	18.06537	15.13663	20.99411 🦉			
25		kraemer	14	0	1	18.06537	15.13663	20.99411 💐			
26 27		kraemer	19	0	1	18.06537	15.13663	20.99411 S			
27		kraemer	26	0	1	18.06537	15.13663	20.99411 🔄			
29		kraemer	28	0	1	18.06537	15.13663	20.99411 [,]			
30		kraemer	24	0	1	18.06537	15.13663	20.99411 🕅			
31		kraemer	26	0	1	18.06537	15.13663	20.99411 🤤			
33		kraemer	8	0	1	18.06537	15.13663	20.99411 🛱			
34		kraemer	12	0	1	18.06537	15.13663	20.99411			
35		kraemer	8	0	1	18.06537	15.13663	20.99411 ਰੁੱ			
36 37		kraemer	18	0	1	18.06537	15.13663	20.99411 🚆			
38		kraemer	23	0	1	18.06537	15.13663	20.99411 _g			
39		kraemer	19	0	1	18.06537	15.13663	20.99411 8			
40								ругі			
41 42								ight.			
42 43			F			6		alia as viatural			
44			ŀ	or peer review of	oniy - http://bm	jopen.bmj.com/	site/about/guid	eiines.xntml			
45											

			E	BMJ Open		6/bmjop
						ben-202
kraemer	3	0	1	18.06537	15.13663	20.99411 ⁰⁰
kraemer	17	0	1	18.06537	15.13663	20.99411 8
kraemer	26	0	1	18.06537	15.13663	20.99411
kraemer	19	0	1	18.06537	15.13663	20.99411 ≥
kraemer	16	0	1	18.06537	15.13663	20.99411
kraemer	35	0	1	18.06537	15.13663	20.99411
kraemer	14	0	1	18.06537	15.13663	20.99411
kraemer	15	0	1	18.06537	15.13663	20.99411 💈
kraemer	29	0	1	18.06537	15.13663	20.99411 충
kraemer	30	0	1	18.06537	15.13663	20.99411
kraemer	24	0	1	18.06537	15.13663	20.99411 ^ă
kraemer	32	0	1	18.06537	15.13663	20.99411 ^S
kraemer	15	0		18.06537	15.13663	20.99411
kraemer	24	0	1	18.06537	15.13663	20.99411
kraemer	9	0	1	18.06537	15.13663	20.99411
kraemer	18	0	1	18.06537	15.13663	20.99411 🚆
kraemer	16	0	1	18.06537	15.13663	20.99411 🚆
kraemer	33	0	1	18.06537	15.13663	20.99411 🔒
kraemer	18	0	1	18.06537	15.13663	20.99411 ຊ
kraemer	21	0	1	18.06537	15.13663	20.99411 ₽
kraemer	19	0	1	18.06537	15.13663	20.99411 7
kraemer	7	0	1	18.06537	15.13663	20.99411 8
kraemer	18	0	1	18.06537	15.13663	20.99411
kraemer	30	0	1	18.06537	15.13663	ی 20.99411
kraemer	27	0	1	18.06537	15.13663	20.99411 🖉
kraemer	20	0	1	18.06537	15.13663	20.99411 및
kraemer	33	0	1	18.06537	15.13663	20.99411 ^A
kraemer	15	0	1	18.06537	15.13663	20.99411 🗄
kraemer	5	0	1	18.06537	15.13663	20.99411 🦉
kraemer	16	0	1	18.06537	15.13663	20.99411 පි
						/right.

3 4

Page 53 of 61				BI	NJ Open		6/bmjoper
1 2							1-2020-0
3	kraemer	14	0	1	18.06537	15.13663	20.99411 巖
4 5	kraemer	21	0	1	18.06537	15.13663	20.99411 🖉
6	kraemer	15	0	1	18.06537	15.13663	20.99411 ^ອ
7	kraemer	26	0	1	18.06537	15.13663	20.99411 2
8	kraemer	17	0	1	18.06537	15.13663	20.99411 ម្ល
9 10	kraemer	17	0	1	18.06537	15.13663	20.99411 👸
11	kraemer	16	0	1	18.06537	15.13663	20.99411 ^{.8}
12	kraemer	16	0	1	18.06537	15.13663	20.99411 🎖
13	kraemer	26	0	1	18.06537	15.13663	20.99411 호
14	kraemer	19	0	1	18.06537	15.13663	20.99411 员
16	kraemer	14	0	1	18.06537	15.13663	20.99411 _T
17	kraemer	8	0	1	18.06537	15.13663	20.99411 ^ă
18	kraemer	34	0	1	18.06537	15.13663	20.99411 👼
19 20	linton	10	1	0	18.06537	15.13663	20.99411
21	linton	21	1	0	18.06537	15.13663	20.99411 🗧
22	linton	8	1	0	18.06537	15.13663	20.99411
23	linton	11	1	0	18.06537	15.13663	20.99411 💐
24 25	linton	11	1	0	18.06537	15.13663	20.99411
26	linton	30	1	0	18.06537	15.13663	20.99411 9
27	linton	32	1	0	18.06537	15.13663	20.99411 👌
28	linton	10	1	0	18.06537	15.13663	20.99411 7
29 30	linton	19	1	0	18.06537	15.13663	20.99411
31	linton	19	1	0	18.06537	15.13663	20.99411
32	linton	14	1	0	18.06537	15.13663	ی 20.99411
33	linton	8	1	0	18.06537	15.13663	20.99411 🖉
34 35	linton	12	1	0	18.06537	15.13663	20.99411 P
36	linton	12	1	0	18.06537	15.13663	20.99411 ^A
37	linton	20	1	0	18.06537	15.13663	20.99411 🗑
38	linton	12	1	0	18.06537	15.13663	20.99411 🦉
39 40	linton	7	1	0	18.06537	15.13663	20.99411 👸
41							yrigl
42							ht.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			E	3MJ Open		6/pmg/b
						ben-20
linton	11	1	0	18,06537	15,13663	20.99411 ⁶
linton	16	1	0	18 06537	15 13663	20 99411
linton	6	1	0	18.06537	15,13663	20.99411
linton	6	1	0	18.06537	15,13663	20.99411 ≧
linton	17	1	0	18.06537	15.13663	20.99411
linton	15	1	0	18.06537	15,13663	20.99411
linton	24	1	0	18.06537	15,13663	20.99411
linton	41	1	0	18.06537	15,13663	20.99411
linton	10	1	0	18.06537	15.13663	20.99411
linton	11	1	0	18.06537	15.13663	20.99411
linton	13	1	0	18.06537	15.13663	20.99411 =
linton	13	1	0	18.06537	15.13663	20.99411 ^S
linton	16	1		18.06537	15.13663	20.99411
linton	13	1	0	18.06537	15.13663	20.99411
linton	14	1	0	18.06537	15.13663	20.99411
linton	18	1	0	18.06537	15.13663	20.99411
linton	12	1	0	18.06537	15.13663	20.99411
tindale	19	0	1	18.06537	15.13663	20.99411
tindale	25	0	1	18.06537	15.13663	20.99411 9
tindale	25	0	1	18.06537	15.13663	20.99411 🕹
tindale	20	0	1	18.06537	15.13663	20.99411
tindale	20	0	1	18.06537	15.13663	20.99411
tindale	13	0	1	18.06537	15.13663	20.99411
tindale	28	0	1	18.06537	15.13663	20.99411 ه
tindale	25	0	1	18.06537	15.13663	20.99411
tindale	24	0	1	18.06537	15.13663	20.99411 T
tindale	14	0	1	18.06537	15.13663	20.99411 g
tindale	17	0	1	18.06537	15.13663	20.99411
tindale	15	0	1	18.06537	15.13663	20.99411 🦉
tindale	18	0	1	18.06537	15.13663	20.99411 ^{පි}
						yrıght.

3 4

Page 55 of 61				В	MJ Open			6/bmjopei
1 2								n-2020-0
3	tindale	15	0	1	18.06537	15.13663	20.99411	398
4 5	tindale	16	0	1	18.06537	15.13663	20.99411	56 0
6	tindale	16	0	1	18.06537	15.13663	20.99411	ក បា
7	tindale	20	0	1	18.06537	15.13663	20.99411	Au
8	tindale	17	0	1	18.06537	15.13663	20.99411	gus
9 10	tindale	12	0	1	18.06537	15.13663	20.99411	t 20;
11	tindale	24	0	1	18.06537	15.13663	20.99411	20.
12	tindale	24	0	1	18.06537	15.13663	20.99411	Dow
13	tindale	26	0	1	18.06537	15.13663	20.99411	/nlo;
14	tindale	16	0	1	18.06537	15.13663	20.99411	ade
16	tindale	20	0	1	18.06537	15.13663	20.99411	d fro
17	tindale	9	0	1	18.06537	15.13663	20.99411	м
18	tindale	15	0	1	18.06537	15.13663	20.99411	nttp:
20	tindale	14	0	1	18.06537	15.13663	20.99411	//bm
21	tindale	18	0	1	18.06537	15.13663	20.99411	ljop
22	tindale	30	0	1	18.06537	15.13663	20.99411	en.b
23	tindale	19	0	1	18.06537	15.13663	20.99411	mj.
24 25	tindale	17	0	1	18.06537	15.13663	20.99411	COM
26	tindale	16	0	1	18.06537	15.13663	20.99411	on /
27	tindale	17	0	1	18.06537	15.13663	20.99411	Ap
28	tindale	20	0	1	18.06537	15.13663	20.99411	ril 7,
30	tindale	23	0	1	18.06537	15.13663	20.99411	20
31	tindale	19	0	1	18.06537	15.13663	20.99411	24 b
32	tindale	12	0	1	18.06537	15.13663	20.99411	у gı
33	tindale	19	0	1	18.06537	15.13663	20.99411	Jest
34 35	tindale	17	0	1	18.06537	15.13663	20.99411	P
36	tindale	17	0	1	18.06537	15.13663	20.99411	otec
37	tindale	14	0	1	18.06537	15.13663	20.99411	ted
38	tindale	16	0	1	18.06537	15.13663	20.99411	by c
39 40	tindale	30	0	1	18.06537	15.13663	20.99411	copy
41								yrigł
42								÷.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

tindale	33	0	1	18.06537	15.13663	20.99411 🖉
tindale	19	0	1	18.06537	15.13663	20.99411 ర్దో
tindale	29	0	1	18.06537	15.13663	20.99411 ^{ອັ} ຫ
tindale	22	0	1	18.06537	15.13663	20.99411 g
tindale	10	0	1	18.06537	15.13663	20.99411 ក្ល្មី
tindale	20	0	1	18.06537	15.13663	20.99411 ^N
tindale	11	0	1	18.06537	15.13663	20.99411 ^[8]
tindale	15	0	1	18.06537	15.13663	20.99411 🖉
tindale	18	0	1	18.06537	15.13663	20.99411 🗟
tindale	11	0	1	18.06537	15.13663	20.99411 👼
						http://bmjope
						http://bmjopen.bmj.com
						http://bmjopen.bmj.com/ on April 7, 2024 b
						http://bmjopen.bmj.com/ on April 7, 2024 by guest.

 6/bmjopen-2020-039856 on 5 August 2020. Downloaded from http://bmjopen.bmj.com/ on April 7, 2024 by guest. Protected by copyright

1		
2 3	30	Supplementary material 4: Stata code
4 5	31	// 1st April 2020
6 7	32 33 24	/* Code for:
8 9	35	Byrne, AW, McEvoy, D, et al. 2020
10	30 37 29	Inferred duration of infectious period of SARS-CoV-2: rapid review and analysis of
12	39	available evidence for asymptomatic and symptomatic covid-is cases
13 14	40 41	*/
14	42 43	* Figure 2
16 17	44 45	gen davies1_gamma = rgamma(5, 1.4)
18	46 47	gen davies2 gamma = rgamma(4, 1.25)
19 20	48 49	gen ma normal = rnormal(7.2, 4.96)
21 22	50 51	
23	52	input hu_data
24 25	55 54	12
26	55 56	1
27 28	57 58	1
29	59 60	11
30 31	61 62	3
32 33	63 64	16
34	65 66	
35 36	67 67	
37	68 69	4
38 39	70 71	6
40 41	72 73	18
42	74 75	8
43 44	76 77	8
45	78 79	11
46 47	80 91	14
48 40	82	14
49 50	83 84	12
51 52	85 86	13
53	87 88	1
54 55	89 90	17
56 57	91 92	3
58	93 94	11
59 60	95 96	
50	90	C

```
2
3
      97
      98
4
            6
      99
5
     100
            21
6
     101
7
     102
             end
8
     103
9
     104
     105
10
     106
            // Fig 2 visualise
11
     107
12
     108
            twoway (histogram hu_data, fcolor(gs14) lcolor(black)) (histogram davies1_gamma,
13
     109
            bin(180) fcolor(ltbluishgray%86) lcolor(none) lwidth(none)) (kdensity
14
     110
            davies1 gamma, lcolor(gs11) lwidth(thick)) (kdensity davies2 gamma, lcolor(gs11)
     111
15
            lwidth(thick)) (histogram davies2_gamma, bin(120) fcolor(orange_red%20)
     112
            lcolor(none) lwidth(none)) (histogram ma_normal, bin(100) fcolor(lime%20)
16
     113
            lwidth(none)) (kdensity ma normal, lcolor(gs11) lwidth(thick)) if ma n>=0,
17
     114
            yscale(line) xtitle(Days since infected) xline(6 6.5 11 3.5, lpattern(dash)
18
     115
            lcolor(black) noextend) xlabel(0(5)30) legend(off) scheme(s2color) xsize(20)
19
     116
            ysize(16) graphregion(fcolor(white)) plotregion(fcolor(white))
20
     117
     118
21
     119
22
     120
            * Figure 3
23
     121
24
     122
            gen rothet3 normal = rnormal(2, 0.6)
25
     123
26
     124
            gen huangt3_normal = rnormal(3.75, 0.332)
     125
27
     126
            gen het3 normal = rnormal(2.3, 0.49)
28
     127
29
     128
            gen weit3 normal = rnormal(2.5, 0.89)
30
     129
31
     130
            gen peakt3 normal = rnormal(0.8, 0.5)
32
     131
     132
            gen daviesAt3 normal = rgamma(5, 0.48)
33
     133
34
     134
            gen daviesBt3 normal = rgamma(4, 0.375)
35
     135
36
            twoway (histogram rothe, bin(120) fcolor(orange_red%20) lcolor(none) lwidth(none))
     136
37
     137
            (kdensity rothe, lcolor(gs11) lwidth(thick)) (histogram he, bin(100)
     138
38
            fcolor(lime%20) lwidth(none)) (kdensity he, lcolor(gs11) lwidth(thick))(histogram
            wei, bin(100) fcolor(orange%20) lwidth(none)) (kdensity wei, lcolor(gs11)
     139
39
     140
            lwidth(thick))(histogram peak, bin(100) fcolor(purple%20) lwidth(none)) (kdensity
40
     141
            peak, lcolor(gs11) lwidth(thick))(histogram daviesA, bin(100) fcolor(brown%20)
41
     142
            lwidth(none)) (kdensity daviesA, lcolor(gs11) lwidth(thick))(histogram daviesB,
42
     143
            bin(100) fcolor(yellow%20) lwidth(none)) (kdensity daviesB, lcolor(gs11)
43
     144
            lwidth(thick)) if peak>=0 & wei>=0 & rothe>=0, yscale(line) xtitle(Pre-symptomatic
            infectious period) xline(0.5 1 1.2 2.6 2.9 3.75 8.2, lpattern(dash) lcolor(black)
     145
44
     146
            noextend) xlabel(0(1)10) legend(off) scheme(s2color) xsize(20) ysize(16)
45
     147
            graphregion(fcolor(white)) plotregion(fcolor(white)) ytitle(Density)
46
     148
47
     149
            * Figure 4
48
     150
     151
49
            // meta analysis & meta regression
     152
50
     153
            clear
51
     154
52
     155
53
     156
54
     157
            // open data =
     158
55
     159
            * meta analysis dataset.xls
56
     160
57
     161
58
     162
59
     163
            // Fit random effects meta-analytical model, and specify forest plot
60
     164
```

2		
3	165	metaan mean se, dl forest label(paper)
4	166	
5	167	// forest plot is figure 4.
6	168	
7	109	// meta regression
8	170	// binary child (y/n) variable
9	172	// Dinary Child (y/h) Vallable
10	173	gen kid cat = 1 if child==1
11	174	
12	175	replace kid = 2 if adult==1 & child!=1
13	170	
14	178	tab kid_cat
15	179	* binary children inclusion in sample [REML]
16	180	
17	181	<pre>xi: metareg mean i.kid if se>0, wsse(se)</pre>
18	182	
19	183	// monte carlo model of P-value
20	185	vi. metareg mean i kid if sell wese(se) permute(1000 joint(i kid))
21	186	x1. metaleg mean 1.kid 11 Sevo, w3Se(Se) permate(1000, joint(1.kid))
22	187	
23	188	
24	189	// binary severe (y/n) variable
25	190	encode sever den(sev num) // 4 way categorical
26	192	encode sever, gen sev_nam, ,, naway encegorical
27	193	gen sev_bin = 0 if sev_n<3
28	194	
29	195	replace sev_bin = 1 if sev_n==3 sev_n==4
30	190	
31	198	
32	199	xi: metareg mean i.sev_bin if se>0, wsse(se)
33	200	
34	201	// monte carlo model of P-value
35	202	xi. metared mean i set hin if set() wese (set) $permite(1000 ignored)$ is set hin))
36	204	11. modelog model 1.001_211 11 00, 0, mode(00, potmo(1.001, joint(1.001_211,),
37	205	
38	206	
39	207	* Figure 5
40	208	
41	210	
42	211	// Import, open time to discharge death.csv
43	212	
44	213	
45	214 215	// numeric indicator for study category
46	216	encode study, gen(study)
47	217	
48	218	
49	219	
50	220	// random effects model for time from onset to removal (discharge or death)
51	222	// 3 levels of study as RE
52	223	-
55 54	224	<pre>xi: xtreg overall_time, i(study_)</pre>
54 55	225 226	// summarise nest-estimation
55 56	227	// Summarise bost_estimation
57	228	estat summarize
58	229	
59	230 231	// Breusch and Pagan Lagrangian multiplier test for random effects
60	232	xttest0

BMJ Open

234 // Figure 5: histogram plot with kernel density 237 twoway(hist overall_time if study_== 3 , bin(10) fcolor(green%20))(hist overall_time if study_== 1, bin(10) fcolor(red%20))(hist overall_time if study_== 2, bin(10) fcolor(purple%20))(kdensity overall time disc death , 1color(gs11) lwidth(mthick)), scheme(s2gcolor) legend(off) xsize(20) ysize(16) graphregion(fcolor(white)) plotregion(fcolor(white)) xline(15.13663 18.06537 20.99411, lpattern(dash) lcolor(black) noextend) // GLM reporting the variation in mean duration across studies xi: reg overall_time i.study_ // GOF test estat hettest // residuals plot rvfplot // prediction predict pred study // visualise twoway(scatter pred study study) // GLM reporting the variation in mean duration across removal type [death or discharge] xi: reg overall time i.discharge // GOF test estat hettest // residuals plot rvfplot // prediction predict pred study // visualise twoway(scatter pred study study)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT			
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	3
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	3
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	4-5
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	5
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	4-5
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	4-5
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	4-5
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	4-5
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	5-7
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	5-7
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	5-7

St. Michael's

	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	8, Tables 1-3
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	Tables 1-3
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	Tables 1-3
Results of individual sources for evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	8-13
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	8-13; figures 1-5
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	14-17
Limitations	20	Discuss the limitations of the scoping review process.	17-18
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	18
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	18

extension for Scoping Reviews.

* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

⁺ A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).

[‡] The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

St. Michael's Inspired Care. Inspiring Science. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039856.R1
Article Type:	Original research
Date Submitted by the Author:	05-Jun-2020
Complete List of Authors:	Byrne, Andrew; Government of Ireland Department of Agriculture Food and the Marine, One-Health Scientific Support Unit McEvoy, David; University College Dublin, School of Public Health, Physiotherapy and Sports Science Collins, Aine; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis; Government of Ireland Department of Agriculture Food and the Marine Hunt, Kevin; University College Dublin, Centre for Food Safety Casey, Miriam; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis Barber, Ann; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis Butler, Francis; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis Butler, Francis; University College Dublin, Centre for Food Safety Griffin, John; Government of Ireland Department of Agriculture Food and the Marine Lane, Elizabeth; Government of Ireland Department of Agriculture Food and the Marine; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis McAloon, Conor; UCD School of Agriculture Food Science and Veterinary Medicine, School of Veterinary Medicine O'Brien, Kirsty; Health Information and Quality Authority Wall, Patrick; University College Dublin, Public health Walsh, Kieran; Health Information and Quality Authority More, SImon; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Epidemiology < INFECTIOUS DISEASES, VIROLOGY, INFECTIOUS DISEASES, PUBLIC HEALTH

1	
2	
3	
4	SCHULARUNE
5	Manuscripts
0	
/	
8	
9	
10	
17	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52 53	
54	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Review only

1 2		
- 3 4	1	Inferred duration of infectious period of SARS-CoV-2: rapid scoping review
5	2	and analysis of available evidence for asymptomatic and symptomatic
7 8 9	3	COVID-19 cases
9 10 11	4	Andrew W. Byrne ^{1^} , David McEvoy ² , Áine B. Collins ^{3, 6} , Kevin Hunt ⁴ , Miriam Casey ³ , Ann Barber ³ ,
12	5	Francis Butler ⁴ , John Griffin ⁶ , Elizabeth A. Lane ^{3,6} , Conor McAloon ⁵ , Kirsty O'Brien ⁷ , Patrick Wall ² ,
13 14 15	6	Kieran A. Walsh ⁷ , Simon J. More ³
16	7	¹ One-Health Scientific Support Unit, DAFM, Government of Ireland, Kildare Street, Dublin 2, Ireland.
17	8	https://orcid.org/0000-0003-0296-4586
19 20	9	² School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield,
21 22	10	Dublin 4, Ireland.
23 24	11	³ Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University
25 26	12	College Dublin, Belfield, Dublin 4, Ireland.
27 28 29	13	⁴ School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
30 31	14	⁵ School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
32 33	15	⁶ Department of Agriculture, Food and the Marine, Government of Ireland, Kildare Street, Dublin 2,
34 35	16	Ireland.
36 37	17	⁷ Health Information and Quality Authority (HIQA), Unit 1301, City Gate, Cork, Ireland.
38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 57 58 59	18	* Corresponding author: ecologicalepidemiology@gmail.com

BMJ Open

Abstract

Objectives: Our objective was to review the literature on the inferred duration of the infectious period of COVID-19, caused by SARS-COV-2 virus, and provide an overview of the variation depending on the methodological approach.

Design: Rapid scoping review. Literature review with fixed search terms, up to 1st April 2020. Central tendency and variation of the parameter estimates for infectious period in (a) asymptomatic (b) symptomatic cases from (i) virological studies (repeated testing), (ii) tracing studies (iii) modelling studies were gathered. Narrative review of viral dynamics.

Information sources: Search strategies developed and the following searched: PubMed, Google Scholar, MedRxiv, BioRxiv. Additionally, the Health Information Quality Authority (Ireland) viral load synthesis was utilised, which screened literature from PubMed, Embase, ScienceDirect, NHS evidence, Cochrane, medRxiv and bioRxiv, HRB open databases.

Results: There was substantial variation in the estimates, and how infectious period was inferred. One study provided approximate median infectious period for asymptomatic cases of 6.5-9.5 days. Median pre-symptomatic infectious period across studies varied over <1-4 days. Estimated mean time from symptom onset to two negative RT-PCR tests was 13.4 days (95%CI: 10.9-15.8), but was shorter when studies included children or less severe cases. Estimated mean duration from symptom onset to hospital discharge or death (potential maximal infectious period) was 18.1 days (95%CI: 15.1–21.0); time to discharge was on average 4 days shorter than time-to-death. Viral dynamic data and model infectious parameters were often shorter than repeated diagnostic data. **Conclusions:** There are limitations of inferring infectiousness from repeated diagnosis, viral loads,

and viral replication data alone, and also potential patient recall bias relevant to estimating exposure and symptom onset times. Despite this, available data provides a preliminary evidence base to inform models of central tendency for key parameters, and variation for exploring parameter space and sensitivity analysis.

Strengths and limitations of this study

A comprehensive overview of the literature pertaining to inferred infectious duration of COVID-19, including indirect measures from virological, contact tracing, and modelling studies to 1st April 2020.

Both narrative review and quantitative analysis presented •

1	
3 50 • Small number of comparable parameter estir	nates for meta-analysis is a limitation
 5 51 • Much of the current research material on CO 	VID-19 is from preprint papers, and therefore
6 7 52 have not gone through formal peer review	
8	
10	
11 12	
13 14	
15	
17	
18 19	
20	
22	
23	
25 26	
27 28	
29	
31	
32 33	
34 35	
36 37	
38	
40	
41 42	
43 44	
45 46	
47	
49	
50 51	
52 53	
54 55	
56 57	
58	
60	

53 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus, emerged in China in late 2019.[1,2] The virus causes COVID-19, a disease characterized by variable, mainly respiratory, symptoms across cohorts, from asymptomatic cases through to mild (for example, dry cough, fever) and severe cases (for example, pneumonia).[3,4] The severity of symptoms, and their clinical outcome, have been reported to vary by age-class and whether patients have underlying comorbidities. The case-fatality rate increases with age, and are highest for those above 70 years. [5,6] There are several cases of asymptomatic test-positive patients reported in the emerging literature (e.g. [4,7,8]). Furthermore, asymptomatic (and pre-symptomatic) cases have been shown to be infectious, and secondary cases have been reported.[9,10] However, the duration of this infectious period is difficult to measure accurately, and the time course of the natural history of infection generally must be inferred indirectly, via contact tracing of cases, serial repeated diagnostic virological studies, and/or through modelling approaches. Symptomatic cases can experience an infectious pre-symptomatic period before the onset of symptoms, therefore understanding the whole infectious period for this cohort requires estimating the duration of both periods. It is essential to rapidly gain insight into this key variable impacting our understanding of COVID-19 epidemiology. Anderson et al. [11] point out one of the "key unknowns" is the infectious period for COVID-19, which they suggest may be 10 days but subject to great uncertainty.

Here we gathered data from published research from peer-reviewed and preprints from 1st
 December to 1st April 2020, to characterize the variation in the infectious duration inferred from the
 three lines of evidence. We also provide a narrative review of the viral dynamic literature. Our focus
 was on duration, relative infectiousness has been dealt with elsewhere [12,13]

The aim of this review was to provide an overview and critical appraisal of published and preprint
 articles and reports that assess or quantify the inferred duration of the infectious period in order to
 best parameterise COVID-19 epidemiological transmission models.

1 2		
3 4	78	Materials and Methods
5	79	Conceptual model of population infection dynamics
7	80	Infectious period was contextualised in relation to a working conceptual model of COVID-19 disease
8	81	dynamics (Figure S1, supplementary material 1). From this conceptual model, three parameters
9 10	82	were identified as important in context of this study:
11	83	T2, defined as: Duration of the total infectious period for asymptomatic cases, post-latent to
12	84	recovery ['recover' in this context relates to clearing of infection]
14	85	T3 defined as: Duration of pre-symptomatic infectious period for those infected individuals
15	86	who subsequently develop symptoms (that is, post-latent to onset of symptoms)
10		
18	87	T5, defined as: Duration from onset of symptoms to recovery* or death.
19 20	88	* recovery was inferred as either the first of two clear RT-PCR tests, or hospital discharge after
20 21	89	admission from COVID-19 related symptoms.
22	90	"Asymptomatic" case definition was interpreted pragmatically following Davies et al. [14, 15], and
23	91	may include very mild symptoms that may occur but are unnoticed.
24 25	0 -	
26	92	T2, T3, T5 represent readily measurable parameters, but may be upper limits of infectious period, as
27	93	patients may be non-infectious for a period before recovery or death. We also review evidence
28 29	94	where infectiousness is inferred from viral shedding and contract tracing [transmission], see below.
30	95	Literature search
31		
32 33	96	A survey of the literature between 1 st December 2019 and 1 st April 2020 for all countries was
34 35	97	implemented using the following search strategy. Publications on the electronic databases PubMed,
36	98	Google Scholar, MedRxiv and BioRxiv were searched with the following keywords: "Novel
37 38	99	coronavirus" OR "SARS-CoV-2" OR "2019-nCoV" OR "COVID-19" AND "infectious". Additionally,
39	100	national and international government reports were monitored. No restrictions on language or
40 41	101	publication status were imposed so long as an English abstract was available. Articles were evaluated
42 43	102	for data relating to the aim of this review; all relevant publications were considered for possible
44 45	103	inclusion. Bibliographies within these publications were also searched for additional resources.
45 46	104	Manual searches of the literature was undertaken using daily updated COVID19 collections
47 48	105	from the National Centre for Biotechnology Information (NCBI) and MedRxiv servers
49 50	106	(https://connect.medrxiv.org/relate/content/181), respectively, searching specifically for
51 52	107	papers relating to "infectious period" or "infectious duration" from both empirical and
53	108	modelling studies.
54 55	109	Finally, we utilised the complementary work undertaken by the Health Information and Quality
56 57	110	Authority (HIQA) of Ireland, specifically the evidence summaries relating to asymptomatic
58	111	transmission and viral load [16,17]. The protocol for the evidence synthesis is published on the HIQA
59 60	112	website [18]. Briefly, the evidence synthesis process included searching databases from 30 th
December 2019 to 27th March 2020 (PubMed, Embase, ScienceDirect, NHS evidence, Cochrane,
medRxiv and bioRxiv, HRB open), screening, data extraction, critical appraisal and summarizing the
evidence.

Our aim was to have as great a breadth for an evidential base as possible, to clarify what evidence was available to inform on the infectious period of COVID19, and to identify key characteristics of the data sources and their interpretation. Therefore, our approach is a scoping review (following [19]). However, due to the emergent nature of COVID-19, this work is considered a rapid review.[20] This paper follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses— Extension for Scoping Reviews (PRISMA-ScR) checklist.

Inclusion criteria were for papers that provided data to inform duration of infectious period based on: time from symptoms to recovery; time from symptoms to death; time from symptoms to diagnostic test clearance [>two clear tests, defined as at least two consecutive negative reverse transcriptase polymerase chain reaction (RT-PCR) tests conducted 24 hours apart]; pre-symptomatic infectious period; time from first diagnostic test to diagnostic test clearance [>two clear tests] for pre-symptomatic/asymptomatic cases. Inclusion criteria for viral dynamics, were papers which reported viral load via cycle threshold (Ct) values from RT-PCR testing over repeated sampling of infected patients, and studies that additional reported viral isolation.

For quality control, studies were (i) selected and screened initially by three members of the team from search terms outlined above (ABC, KH, FB), with parameters identified and recorded. (ii) This was reviewed and supplemented by manual search by a different two team members (AWB, DM), again with parameters identified and recorded. (iii) Finally, the review was then internally reviewed by an additional two members of the team (CMc, MC), and cross-referenced with other parameter synthesis documents being worked on by the group (all authors).

47 137 Parameter comparison

138 Parameters of interest

1. A-priori it was decided to harvest parameter estimates for (i) asymptomatic, and (ii) symptomatic cases. As the period of infectiousness can only be estimated indirectly, parameter estimates from the literature was gathered from three different methodological approaches: Virological studies tracking patients overtime undertaking serial testing, where infectious period was inferred from diagnostic testing history and/or by virus isolation.

Page 9 of 62

BMJ Open

1 2		
3	144	2. Contact tracing studies where infectiousness is inferred by infector-infectee histories and/or
4 5	145	clusters of infection.
6 7	146	3. Model parameters entered into mathematical models [priors] representing explicitly
8	147	infectious periods, or model parameters estimated from mathematical models [posterior
9 10	148	estimates] estimating explicitly infectious periods
11 12		
13	149	
14 15 16	150	Visual and quantitative comparisons
17	151	To compare parameters visually, simulated distributions were estimated from the central tendencies
18 19	152	and variation metrics described in the primary literature. To simulate data, 10,000 random variates
20 21	153	were drawn from random number functions in Stata (ME, version 15.1; StataCorp. 2017. Stata
21	154	Statistical Software: Release 15. College Station, TX: StataCorp LLC) [rnormal, rgamma]. Where
23 24	155	possible, the distribution reported within the primary literature was used to represent the
25 26	156	distribution (e.g. Gaussian, Gamma). Where distributional data could not be inferred, point
20 27 28	157	estimates were presented.
20 29 30	158	There were adequate comparable data gathered on the duration of T5 (duration from onset of
31	159	symptoms to death or recovery) from virological studies to employ a meta-analytic model. Many of
32 33	160	the studies report different central tendency estimates, including mean and median. Methods of
34 35	161	reporting variation across this central tendency included standard deviation, range, inter-quartile
36	162	range. To facilitate meta-analysis, reported estimates from all studies were converted to the mean
37 38	163	and standard deviations based on the formulae given in Wan et al. [21].
39 40	164	To obtain the standard deviations from 95%CI, the method outlined in the Cochrane handbook [22]
41 42	165	was used:
43 44	100	SDev/c/Upper limit of Cl. Lower limit of Cl/2 02
45	100	SD: Vn(Opper limit of CI – Lower limit of CI)/3.92
46 47	167	
48 49	168	Standard Error (SE) was calculated from Standard Deviation (SD) and sample size (n), using:
50 51	169	SE = SD/SQRT(n)
52 53	170	Comparisons were made using the METAAN package in Stata 15, using the random-effects
54 55	171	(DerSimonian-Laird) model.[23] This model assumes heterogeneity between the studies; that is, it
56	172	assumes that the true effect can be different for each study. The model assumes that the individual-
57 58	173	study true effects are distributed with a variance τ^2 around an overall true effect, but the model
59 60	174	makes no assumptions about the form of the distribution of either the within-study or the between-

studies effects. Weightings were derived from the standard error [precision] around the estimate.
 176 Comparisons were presented as forest plots. Heterogeneity between studies was tested using
 177 Cochrane's Q; the magnitude of the heterogeneity was categorised using *I*² as high (>75%), moderate
 178 (50-75%), or low (<50%).[24]

Variation in duration across T5 virological studies was compared using a random effects meta-regression model, using the METAREG command in Stata 15.1. The hypothesis that heterogeneity may be related to the inclusion of children or depending on symptom severity within the sample, was tested in separate univariate models. Severity was dichotomised (0/1) into studies that included patients described as having 'mild' or 'mild-moderate' symptoms, versus studies that included patients with 'moderate-severe' or 'severe' symptoms. Similarly, studies were categorised into having some samples from "children" (as reported in the paper), or wholly adult samples. These variables were then fitted as a dichotomous dummy predictor [independent]. The parameter estimates from the regression model was solved using restricted maximum likelihood (REML); additionally, p-values were estimated using a Monte Carlo model with 1000 permutation test.[25] Raw patient-level data were available from three studies in relation to time from onset to hospital discharge or death (potentially inferring maximal T5 duration). To estimate the predicted mean and

191 95%Cl duration across these studies, data were analysed using a Gaussian random effects model
 192 (using XTREG command, Stata 15), with study categories fitted as the RE. A linear regression model
 193 with 'study' fitted as a categorical dummy variable was used to estimate the difference between
 194 duration across study datasets. Code and data are provided in Supplementary Material 2 & 3.

3839 195 *Viral dynamics*

A narrative comparison of reported viral dynamics from studies that undertook serial viral load
 An arrative comparison of reported viral dynamics from studies that undertook serial viral load
 estimates from patients over their period of observation was undertaken. Trends in the literature,
 strength and weaknesses were identified, and a conceptual model illustrated.

1 2		
2 3 4	199	Results
5 6 7	200	Parameter comparison
7 8 9	201	Overall, 65 parameter estimates were harvested from 48 papers (Tables 1, 2, 3).
10 11	202	Infectious period for asymptomatic cases (T2)
12 13	203	The overall distributions and point estimates from studies for T2 are presented in Figure 1 and Table
14 15	204	1.
16 17	205	Two virological studies reported on infectious period based on serial diagnostic testing, for
18 19	206	asymptomatic cases, were found to have informative data. One of these studies reported on only
20	207	one asymptomatic case, with exposure to negative tests being 11 days (Table 1). This duration
21 22 23	208	should be considered an over-estimate, given that a latent period is not taken into consideration. Hu
	209	et al. [7] tracked infections of close contacts to infected persons and considered patients
24 25	210	asymptomatic at time of diagnosis. Infectious period was defined as time from diagnosis to the first
26 27 28	211	of two clear tests, providing a median duration of 9.5 days (n=24) range: 1 – 21; 3.5-13.0 IQR.
29	212	Importantly, Hu et al. [7] found that the infectious period was different between those who
30 31 32 33 34 35 36 37	213	subsequently exhibited symptoms (i.e. pre-symptomatic) and those who did not: The median
	214	duration for asymptomatic infectious was 6.0 days (IQR: 2.0 - 12.0; N=19). This was reduced to 4.0
	215	days (2.0 - 15.0) for cases that were asymptomatic without abnormal computed tomography (CT)
	216	scans (n=7).
38	217	Two tracing studies provide informative data (Table 1; [7,8]). Infectious period was inferred
39 40	218	indirectly from data provided in Ma et al. [8], whereby infectious period was estimated as the
41 42	219	difference between the upper (maximal) latent period estimate minus the serial interval. Ma et al.
43	220	[8] reports on 49 asymptomatic cases and inferred serial interval from infector-infectee pairs. Serial
44 45	221	interval was calculated by assuming "onset" was at first diagnosis. Hu et al. [7] reported on a case-
46 47	222	study cluster of infection within a house where the primary case was asymptomatic. Secondary
48	223	infections occurred 4-9 days after index case exposure, the index patient tested positive until day 29
49 50 51	224	post exposure.
52 53	225	Modelling studies that have attempted to fit differing parameters depending on the severity of
54	226	symptoms have used differing nomenclature, for example asymptomatic, "mild" or subclinical cases
55 56	227	(Table 1).[14,15,26,27] Two papers by Davies and colleagues [14,15]model this parameter as a
57 58	228	gamma distribution with a mean periods of 5-7 days (Fig. 2); importantly, these papers assume
59 60	229	infectious period is the same for asymptomatic and symptomatic cases.

2
З
1
4
5
6
7
, o
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
י ∡ רר
22
23
24
25
26
20
27
28
29
30
21
31
32
33
34
25
35
36
37
38
20
27
40
41
42
42
رب ^ر
44
45
46
47
10
40
49
50
51
52
52
22
54
55
56
57
57
58
59

1

230 <u>Pre-symptomatic, infectious period (T3)</u>

Pan et al. [3] and Hoehl et al. [28] describe the cases of two individuals tracked and serially tested by
real-time reverse transcriptase polymerase chain reaction (RT-PCR) after being exposed to a patient
with confirmed infection. In the latter study, the virus was isolated from samples, indicating
transmission potential.

Four studies from China, Germany and Singapore provide informative data through tracing infections from cluster of infections, and through infector-infectee pairs (Table 2).[4,9,29,30] These papers included the study by Rothe et al. [9], which clarified that an asymptomatic patient visiting Germany from China may have actually experienced very mild symptoms around the time of transmission occurred (see discussion).

Five modelling papers incorporated pre-symptomatic infectious period reported as prior distributions or estimated as a model output. Two papers describe the prior distribution using a gamma distribution.[14,15] Tindale et al. [31] provide mean point estimates under four different scenarios (two populations, early and late epidemic period). Peak et al. [32] derives estimates of the pre-symptomatic infectious duration from a model of serial interval, and report scenarios where there are pre-symptomatic infectious periods.

The approximated distributions are simulated in Figure 2, which demonstrates the between-study heterogeneity in this parameter. The point estimates primarily cluster around the central tendencies of the distributions, except for Tindale et al. [31], for a model reporting for late occurring cases in Tianjin, China (8.2 days).

40 250 <u>Post-symptom onset, infectious period (T5)</u>

251 The T5 parameter was informed from three lines of evidence from empirically driven studies:

- time from symptoms onset to the first of two clear RT-PCR tests
- time from symptoms to hospital discharge
- time from symptoms to death

Figure 3 presents the forest plot for the mean time from symptom onset to clearance, based on serial testing meta-analysis (n=15). The mean estimated duration was 13.4 days (95%CI: 10.9-15.8). There was high heterogeneity across studies (Cochrane's Q; p<0.001; *l*²>75%). A random effects (RE) meta-regression model suggested significant variation depending on whether studies included children as part of the sample (n=15 studies; Proportion of between-study variance explained Adj. R² = 43.8%). Overall, the model estimated studies including children had on average 5.8 days

1 2		
3	261	shorter duration than adult only studies (95%CI: 1.7-10.0; p=0.040; SE(p)=0.003). A second univariate
4 5 6 7 8 9 10 11	262	RE meta-regression model suggested that there was non-significant increased mean duration of 4.0
	263	days (95%CI: -0.6-8.6; p=0.111; SE(p)=0.005; Adj. R ² = 22.0%; n=14) for studies that included
	264	moderate-severe or severe cases, relative to mild or mild-moderate severity cases.
	265	High transmissibility during the first 5 days post symptom onset was described by Cheng et al. [33],
12	266	based on secondary attack rates for 12 infector-infectee pairs. No contacts (n=1043) with primary
13 14 15 16	267	cases were infected after five days of the index case onset of symptoms, inferred by the authors to
	268	suggest transmission occurring at symptom onset (but conceivably also suggest pre-symptomatic
17	269	infection). Based on a cumulative density function, the authors suggest that infectiousness declines
19	270	rapidly from onset of infection (distribution was truncated at 30 days); estimated cumulative
20 21	271	infectiousness was 66.9% (95%CI: 28.7-94.8) by day 1, and reached 86.9% (95%CI: 64.3-99.5) by day
22 23	272	5 post-symptom onset (Figure S2).
24 25	273	For tracking studies relating to time to hospital discharge or death, raw case level data were
26 27	274	available (studies n=3).[31,34–36] Histograms of the raw data are presented in Figure 4, along with
28	275	the aggregated distribution. A random effect model suggested a mean duration of 18.1 days (95%ci:
29 30	276	15.1 – 21.0). However, there was significant variation across studies, with time to discharge being
31 32	277	4.96 days shorter (95%CI: 2.15- 7.76; [35]), or 3.79 days shorter (95%CI: 0.8-6.7; [31]), than time-to-
33	278	death [34].
34 35	279	Two modelling papers use priors (mean: 3.2-3.5 days) to represent clinical infectious period.[14,15]
36 37	280	However, the distribution for this parameter is right censored when patients are hospitalised or
38 39	281	isolated and therefore not an estimate of the full infectious period per se.
40		
41 42	282	Infectious period for symptomatic cases (T3+T5)
43 44	283	Two tracing studies supplied parameter estimates for the full infectious period for patients who
45 46	284	develop symptoms. [8,29] He et al. [29] inferred from a publicly available dataset of 77 infector-
40	285	infectee pairs that infectiousness began 2.3 days (95% CI, 0.8–3.0 days) prior to symptom onset,
48 49	286	peaking at 0.7 days (95% CI, $-0.2-2.0$ days), and continued up to 7 days from onset. The authors
50 51	287	suggest that the transmission risk diminishes 7 days post symptom onset. This suggests that the
51 52	288	average infectious period, assuming a symptomatic infectious period of 7 days was approximately
53 54	289	9.3 days (7.8-10 days 95%CI, where CI is only reported for the pre-symptomatic period). He et al.
55 56	290	[29] estimated that the proportion of all transmission that was pre-symptomatic was 44% (95% CI,
57	291	25–69%). Ma et al. [8] analysed data from a number of countries (China, Germany, Japan, Malaysia,
58 59 60	292	Singapore, Vietnam), collating 1155 cases from public data. They estimate several parameters,

including "maximum latent period" and the serial interval. The authors estimated the infectious
period as maximum latent period minus the serial interval. Given their parameter estimates and
methodological approach, infectious period would have been 5 days (range 0-24; IQR: 2-9;
calculated from data presented within the paper).

Seven modelling papers reported duration of infectious period (T3+T5; Table 4), with the reported central tendency for the distribution varying from 3-20 days. The form of the distribution offered to models for this parameter varied considerably, including point estimates (deterministic models), flat (uniform), Gaussian, Weibull and gamma distributions. Li et al. [27] estimated the shortest median duration of 3.45 days, with a flat (uninformative) prior distribution corralled between 3-5 days. In contrast, Zhu et al. [37] used a mean prior of 10 days, with the model estimated mean duration being 12.5 days (variance 10; Weibull distribution). Piccolomini and Zama [38] used a fixed estimate of 20 days infectious period, to model the Italian epidemic. Two papers from the same group [14,15] suggested that infectious period for asymptomatic cases approximated for symptomatic cases where there was no right censoring (that is, transmission being halted through isolation or hospitalisation; gamma distributions of mean 5 or 7 days). Tuite et al. [26,39] also assumed the same duration for "mild" and "severe" symptomatic cases (6-6.5 days).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

310 Viral load dynamics

Viral load was reported from 21 papers using real-time reverse transcriptase polymerase chain reaction (rRT-PCR) testing, generally post-symptomatic monitoring.[3,29,40–59] Qualitatively, the viral dynamics described early increase in viral load, peaking around onset or within 2-4 days of symptom onset (Figure 5 for a theoretical model), before decreasing gradually over the next one to three weeks post symptom onset. Maximum duration of detection ranged from approximately 20-49 days, with the longest duration associated with faecal samples (see below for discussion). The duration where ribonucleic acid (RNA) was recoverable by RT-PCR may have been truncated due to insufficient follow-up in some cases. Studies that have investigated blood samples have provided some evidence for an association with severity of infection [16,60], though it is not clear whether this is a consistent feature of SARS-CoV-2 infection [40].

It should be noted the lack of data on pre-symptomatic or asymptomatic cases with regards viral load. An exception was Kam et al. [61] who describe a pre-symptomatic case in an infant. In another study, Zou et al. [53] undertook serial RT-PCR testing from nasal and throat swab samples from 14 imported cases, and 4 secondary cases, in Guangdong, China. The dynamics of the infection in terms of cycle threshold (Ct) values and RNA copy number were described; Ct values of 30.76, 27.67, 24.56, and 21.48 corresponding to 1.5×10^4 , 1.5×10^5 , 1.5×10^6 , and 1.5×10^7 copies per milliliter. Hence, lower Ct values infer higher viral loads. The authors report on a patient without symptoms, but with positive nasal swabs (Ct values, 22 to 28) and throat swabs (Ct values, 30 to 32) testing positive on days 7, 10, and 11 after contact. Importantly, the authors suggest "the viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients." Furthermore, Kimbell et al. [62] report that Ct values between asymptomatic (21.9 to 31.0), presymptomatic (15.3 to 37.9), and symptomatic cases (18.6 to 29.2) within a nursing home environment did not differ significantly. To et al. [59] present data on temporal profile of viral load from saliva samples, and found that median initial and peak viral loads in severe cases were non-significantly higher (p>0.5) by approximately 1 log10 higher than those in mild cases. Liu et al. [58] present data showing viral load being 60 times greater for severe cases relative to mild cases. This lack of pre-symptomatic data may result in left truncation of the risk distribution associated

with viral load and shedding. Therefore, the typical timing of peak viral shedding (whether prior to, at, or after onset), and it's impact on transmission, is still uncertain. He et al. [29] reported highest viral load at symptom onset from patients sampled in a hospital in China. Furthermore, the author's estimate using a separate infector-infectee dataset (n=77) that 44% (95% CI: 25-69%) of infectee cases were infected during the pre-symptomatic stage of the infector. Separately, a modelling paper

by Ferretti et al. [63] also appears to support this, estimating that 47% (0.9/2) of total transmission contributing R₀, an overall measure of transmission during an infection, was pre-symptomatic (also see [33]).

Wölfel et al. [50] provides important data on a cohort of nine 'mild' cases which were serially tested using sputum, swabs (throat and nasopharyngeal), urine and faecal samples over time. Importantly, the virus was isolated, and inferences on viral replication could be made. Viral Isolation, and insights into viral replication, improve inference around viral dynamics and transmission risk. The study suggested high viral loads shortly after symptom onset, which declined thereafter over time. Positive cultures were found from day 3-8 post-symptom onset (Figure S3), and the minimum 5% isolation success was achieved up to 9.8 (95% CI: 8.5-21.8) days post onset from throat and lung samples but not faeces, blood or urine.

Page 17 of 62

1

BMJ Open

2		
3 4	354	Discussion
5 6	355	Inferring infectiousness was challenging given the heterogeneity of evidence available. Virological
7 8	356	diagnostic studies provide robust time series of infection, however, is limited by inferring the
9	357	relationship between PCR diagnostics and infectiousness. These data can also be affected by
10 11	358	sampling procedure and sample sites (e.g. upper respiratory, lower respiratory, faeces, urine, blood).
12 13	359	We have excluded RT-PCR durations based on faecal sampling due to the current uncertainty
14	360	whether these data pertain to transmission potential ([50]; see below). Virological studies where
15 16	361	culturing has taken place, and where viral replication can be inferred would also be considered
17 18	362	superior data to infer infectious period, relative to estimates of viral load alone.[50] Where this has
19	363	taken place, the data would suggest average infectious periods of up to 9.8 days post-symptoms.
20 21	364	Recent modelling work suggest that the duration of viral detectability could overestimate the
22 23	365	infectious period somewhere between 2-6 days.[64]
24 25	366	Viral load studies suggest peak viral load occurs close to symptom onset (potentially, -1 to 7 days of
26 27	367	onset), however there is uncertainty whether this typically occurs prior to, on, or after onset (Figure
28	368	5 for conceptual model). High viral loads, measured as Ct values, have been recorded for one week
29 30	369	to 20 days post symptom onset, with a general decreasing trend with time. For example, To et al.
31 32	370	[59] estimates a declining slope per day for log10 RNA copies per ml of -0.15 (95% Cl -0.19 to -0.11 ;
33	371	$R^2=0.71$). There are some studies reporting associations between viral load and symptom severity,
34 35	372	with higher metrics of viral load in severe cases.[3,58,59] However, Zou et al. [53], and more recent
36 37	373	data from Italy,[64,65] suggest similar viral loads in symptomatic and asymptomatic cases.
38 39	374	We tested the hypothesis that severity of symptoms had an effect on symptomatic infectious
40 41	375	duration using a meta-regression approach. There was a trend towards studies that included severe
42	376	cases tended to have longer duration (estimated to be 4.0 days longer), but the effect was not
43 44	377	significant. Some studies have reported an association between duration of infectiousness and
45 46	378	severity (e.g. [58]). But uncertainty of whether this is robust remains. Caution is required when
47 48	379	comparing severity of symptoms, as objective or standardised metrics are not always reported.
49 50	380	Virological studies that included children (either mixed adult children, or children only cohorts)
51 52	381	appeared to have shorter T5 durations (estimate: 5.8 days shorter). Liao et al. [66] present data
53	382	which suggests that children and 'young adults' (<35 years old) infected cases exhibited long
54 55	383	incubation time (exposure to symptom on-set; mean 7.2 days), and short serial interval (mean 6.5
56 57 58 59 60	384	days; median 1.9 days; time from onset in primary to onset in secondary case).

Contact tracing studies provided robust evidence of transmission events, and therefore infectiousness, but can be limited by the inferred timing of events, and symptoms experienced, due to the self-reported nature of data collection (recall bias). The subjective nature of self-reporting indeed can have an impact on case definitions of 'asymptomatic', which has led to some doubt on asymptomatic transmission in one case. [9] Rothe et al. [9] describe a case of apparent asymptomatic transmission from a Chinese visitor to business associates in Germany, which was cast into doubt when health officials reported that the patient had indeed experienced some, albeit minor, symptoms.[67] Rothe et al. [9] subsequently updated the clarification of the patients self-reported symptoms during the presumed asymptomatic infectious period, which included "feeling warm" and "feeling cold". However, the patient only "recognized getting sick" after she returned to China on day four after the presumed exposure event.

Modelling parameters provide information on how COVID-19 data are being used and interpreted in the research community, given the limited data available. Posterior estimates also provide information on the parameter space at which infectious period central tendency reside, given other parameters and assumptions in the model. Models used highly varied approaches to modelling infectious period, which in turn resulted in highly variable parameter estimates used to inform the studies. An important factor to consider when comparing parameter estimates between empirical and modelling studies is the interpretation of the parameter by different disciplines, and even between researchers from the same discipline. The infectious period can be considered significantly context specific and dynamic, and the ability to transmit infection can be modulated by interventions (e.g. through isolation or hospitalisation). Modelling papers, depending on the model structure, can report truncated infectious period accounting for such interventions. Such estimates are not comparable with our definition of the parameters reviewed, and we have attempted to avoid such disparities where we found them.

45 409 Overall duration findings

There are few data for the precise definition of the asymptomatic infectious period (T2) parameter. Some reported asymptomatic cases can actually be pre-symptomatic, when cases are subject to follow-up (e.g.[66]; see discussion above). However, Hu et al. [7] do provide the data for asymptomatic cases [that remain asymptomatic] across their presumed infectious period. Therefore, in the first instance a parameter mimicking their data is probably the best available data over the period of the present study. Note, there is a large variation in this data parameter, and a gamma distribution of a shape alpha 3, beta 2, mean 6, may be appropriate for the initial model runs. Despite these being the primary informative data, caution is required, given the uncertainty around

BMJ Open

the relationship between RT-PCR results and infectiousness. Overall, an informed central tendency
of ~6 days, with very low probability draws for durations >20 days for the T2 parameter may be
considered given the current state of knowledge.

The pre-symptomatic period is sometimes referred to as 'preclinical infectious' period (parameter T3). This has been estimated from several papers, and the central tendency of these estimates vary from <1 - 4 days, cautiously approximating to 2 days, on average. Current models have used central tendency estimates of 0.5 to 2.4 days.[14,15,26,39] The relative consistency around the duration of this period allows for some confidence of its distribution. Current understanding of viral dynamics of infection suggest that viral load and shedding increases during post-latent phase, peaking around onset [for symptomatic cases], before declining. [29, 50, 53] This aspect of the natural history of infection may be important when attempting to model transmission dynamics.

Length of infectious period in symptomatic cases that do not isolate (T5 parameter) has also been rarely directly measured in the literature, as serial monitoring of patients in terms of symptoms or viral load (rt-PCR) generally occurs after diagnosis and/or after admission to hospital [from a modelling perspective, this means cases are censored as they are assumed to no longer contribute to transmission]. If natural progression of infection after diagnosis or hospital admission mimics the course of infection for those who do not isolate, the review of the literature describing time to two clear tests is informative. Symptom onset to serial testing clearance [assessed the time to first of two RT-PCR clear tests] averaged 13.4 days from our meta-analysis. In the maximal case, where patients succumb or fully recover from infection, time from symptoms to death or discharge may be informative. Studies that collated such information suggest mean durations of 18.07 days, but with time to discharge being 4.96 days shorter on average than time to death. These values may represent an over estimation of the infectious period; one study suggested that there was on average 2.5 days between end of infectiousness and 'removal' (recovery or death).[37]

Cheng et al. [33] provided evidence of transmissibility, based on attack rate from primary to secondary cases, at around symptom onset. The authors estimate cumulative infectiousness from onset, which suggests that 67% of total infectiousness potential occurs by the first day post-onset. Most of the total infectiousness occurs within 5 days (86.9%) post onset, with the remaining infectiousness potential (13.1%) being distributed up to day 30 (this truncation is an assumption by the authors). It is possible that pre-symptomatic transmission occurred during this study, but the authors do not estimate what proportion of transmissions occurred during a pre-symptomatic infectious period, or its potential duration.

A model by He et al. [29] is informative for overall symptomatic duration (T3+T5), using 77 infector-infectee pairs where COVID-19 transmission occurred in China. The study reported that infectiousness was apparent on average 2.5 days prior to symptoms, reached a peak in risk at 0.6 days before symptoms, and decline up until 7 days after onset (9.5 days total infectious period). The proportion of transmission before symptom onset (area under the curve) was estimated as 44% (95% CI, 25–69%), based on inferences on incubation period. The authors suggest their data supported the view that transmission risk decline substantially after 7 days post-symptoms onset. Model estimates used for infectious period parameter appears to be shorter than virological studies tracking RNA viral load over time. For example, Liu et al. [27] fitted a flat prior distribution for mean duration (D) fixed to vary between: $2 \le D \le 5$ days, and Lavezzo et al. [64] fixed infectious period to 2 days in their epidemic model; whereas viral repeat testing studies provide evidence to suggest high viral loads can be detected to up 20 days (e.g. pharyngeal swabs], and potentially longer from faecal samples (up to 3-4 weeks post symptoms onset)). Oral-faecal transmission risk is currently unknown, but some doubt has been raised about studies that have reported positive RTPCR test results (see [68]; but there may be some evidence of the risk amongst children; [69]). Wölfel et al. [50] has produced an important study that provides some data on viral replication, and the site and duration over which this may be taking place. Their data suggests that viral replication, with high viral loads, occur in the upper respiratory tract, over the first week of symptoms peaking in day 4. Virus could not be isolated from faecal samples, despite high RNA concentration. Furthermore, virus was not isolated from blood or urine in that study.[50]

It should be noted that some of the virological and tracing studies reviewed had small sample sizes (see Study Limitations) and potentially biased towards more severe cases or clusters of infection. It is unknown as to whether these cases are representative of infectious duration generally across populations. However, if symptom severity is linked to infectious duration, one could speculate that this bias could help to explain the some of the difference between model and empirical duration estimates.

49 476 Study limitations

Overall, the studies included were of good quality, though due to the rapid need for information from the global research community many papers are pre-prints that have yet to be reviewed (at time of writing). Many papers were limited in terms of sample sizes, with several papers being case studies of one patient or single cluster outbreaks. There was a diversity of methods employed to infer dynamics of infectiousness across studies, and therefore the evidential base was variable. Some issues around nomenclature were noted, including definitions of asymptomatic, infectious period,

BMJ Open

483 latent, and incubation period. It is possible the same data may have been used across different
484 studies, especially where publicly available data were used.

There was significant heterogeneity across study findings, and this was related to diversity of clinical findings and methods employed. The meta-analysis employed for one parameter (T5) using virological studies, where cross study comparisons could be made, suggested that the heterogeneity was high. Fu et al. [70] cautions against combining studies to give an overall estimate without exploring subgroup or meta-regression analysis, which we have done here. The meta-regression was based on a small number of studies (n=12-13). Cochrane's handbook suggests 10 studies for each level of a meta-regression, however in practice much lower numbers have been used to test hypotheses [22], as is the case here. Fu et al. [70] recommend a minimum of 4 studies per category, and therefore we dichotomised our predictor variables to ensure we met this minimum. Aggregating our categories resulted in crude findings.

Another limitation is that a systematic review was not undertaken to inform this research, hence there is a possibility that some relevant studies were overlooked. However, two independent research groups conducted comprehensive search strategies as part of a broader epidemiological parameters project for COVID-19 [12,13,71,72,73] to inform this research, hence limiting the potential for missing key studies.

500 Conclusion

There are few data to inform asymptomatic infectious period (T2 parameter). One study provide data that suggest a median period of 4-9.5 days, however, given the viral dynamics, this distribution could have an extended tail with low probability long infectious periods of up to 20 days. The pre-symptomatic infectious phase (T3) is quite narrowly defined to a mean of approximately 2 days (range: <1-4) within the literature. However, there is great uncertainty around the infectious period from onset to recovery or death (T5 parameter). The symptom onset until clearance (based on two negative RT-PCR tests) parameter estimate of 13.4 days (95%CI: 10.9-15.8) is informative for T5 parameter, only if one assumes that RT-PCR positive results equate to having infectious potential. Many current models corral the infectious period to shorter time periods than what virological studies have suggested, with one recent study suggesting that duration of viral detectability overestimates the infectious period on average by 2-6 days. While viral RNA can be detected for long periods of time, especially from faecal samples, the ability to isolate the virus from Infected cases quickly declines after one-week post-symptoms. Some modelling papers have assumed that infectious period is invariant to whether cases are asymptomatic or symptomatic, however, the data available are not yet rich enough to inform whether this is a good assumption. Similarly, it is not yet

2		
3 4	516	established whether viral loads are similar between asymptomatic and mild, moderate, or severe
5 6	517	symptomatic cases, with conflicting reports in the literature.
7 8	518	Word count: 5829
9 10	519	Contributors: AWB conducted the eligibility screening of shortlisted studies, extracted the data and
11 12	520	conducted the analyses, completed the initial draft of the manuscript; SM was involved in
13	521	conception and project coordination; ÁC, KH and FB conducted the initial literature searches; DM,
14 15	522	KOB, KW conducted searches and screened shortlisted studies; AWB, SM, ÁC, KH, FB, DM, KOB, KW,
16 17	523	AB, JG, LL, PW, CM, MC critically reviewed and commented/edited the paper. All authors read and
18 19	524	approved the final manuscript.
20 21	525	Competing interests: All authors have completed the ICMJE uniform disclosure form at
22	526	www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted
23 24	527	work; no financial relationships with any organisations that might have an interest in the submitted
25 26	528	work in the previous three years; no other relationships or activities that could appear to have
27 28	529	influenced the submitted work
29 30	530	Funding: All investigators are full-time employees (or retired former employees) of University
31 32	531	College Dublin, the Irish Department of Food and the Marine (DAFM), or the Irish Health Information
33 34	532	and Quality Authority (HIQA). No additional funding was obtained for this research.
35 36	533	Data availability statement: The data used in this paper and code are presented in Supplementary
37 38	534	Material 2 & 3; No additional data available.
39 40	535	Patient and public involvement statement: It was not appropriate or possible to involve patients or
41 42	536	the public in the design, or conduct, or reporting, or dissemination plans of our research
43 44	537	
45		
46 47		
48		
49 50		
51		
52		
53 54		
55		
56 57		
57 58		
59		
60		

2		
3	538	References
4 5 6 7	539 540	1 Wu F, Zhao S, Yu B, <i>et al.</i> A new coronavirus associated with human respiratory disease in China. <i>Nature</i> 2020; 579 :265–9.
8 9 10 11 12	541 542 543	2 Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. <i>The New England Journal of Medicine</i> 2020; 382 :1199– 207.
13 14 15	544 545	3 Pan Y, Zhang D, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases 2020;20:411–2.
16 17 18	546 547	4 Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020;395:497–506.
20 21 22 23	548 549 550	5 Russell TW, Hellewell J, Jarvis CI, <i>et al.</i> Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. <i>Eurosurveillance</i> 2020; 25 :2000256.
24 25 26 27 28	551 552 553	6 Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. <i>Jama</i> 2020. 323(18):1775-1776. doi:10.1001/jama.2020.4683
29 30 31 32 33	554 555 556	7 Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Science China Life Sciences 2020;:1–6.
34 35 36 37	557 558 559	8 Ma S, Zhang J, Zeng M, <i>et al.</i> Epidemiological parameters of coronavirus disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven countries. <i>medRxiv</i> 2020. DOI: 10.1101/2020.03.21.20040329
38 39 40	560 561	9 Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New England Journal of Medicine 2020;382:970–1.
41 42 43 44	562 563	10 Bai Y, Yao L, Wei T, <i>et al.</i> Presumed asymptomatic carrier transmission of COVID-19. Jama 2020. 323(14):1406-1407. doi:10.1001/jama.2020.2565
45 46 47 48 49	564 565 566	11 Anderson RM, Heesterbeek H, Klinkenberg D, <i>et al.</i> How will country-based mitigation measures influence the course of the COVID-19 epidemic? <i>The Lancet</i> 2020; 395 :931–4.
50 51 52	567 568	12 Casey M, Collins A, Hunt K, et al. Pre-symptomatic transmission of SARS-CoV-2 Infection. 2020. doi: https://doi.org/10.1101/2020.05.08.20094870
53 54 55 56 57	569 570 571	13 IEMAG Epidemiology Modelling subgroup. COVID-19 epidemiological parameters summary document. 2020. https://www.gov.ie/en/publication/dc5711-irish- epidemiology-modelling-advisory-group-to-nphet-technical-notes/
58 59 60	572 573	14 Davies NG, Klepac P, Liu Y, <i>et al.</i> Age-dependent effects in the transmission and control of COVID-19 epidemics. <i>medRxiv</i> 2020.

2		
3	574	15 Davies NG, Kucharski AJ, Eggo RM, <i>et al.</i> The effect of non-pharmaceutical
4	575	interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a
5	576	modelling study. <i>medRxiv</i> 2020. https://doi.org/10.1101/2020.04.01.20049908
7	0.0	
8	577	16 HIQA. Evidence summary for COVID-19 viral load over course of infection. Health
9	578	Information and Quality Authority, Ireland, Access date: 1st April 2020.
10	579	https://www.higa.je/reports-and-publications/health-technology-assessment/evidence-
11	580	summary-covid-19-viral-load-over (accessed 1 Apr 2020)
12	380	summary-comu-19-viral-load-over (accessed 1 Apr 2020).
13 14	581	17 HIOA Evidence summary for asymptomatic transmission of COVID-19 Health
14	501	Information and Quality Authority, Iroland, Access date: 1st April 2020
16	502	https://www.higs.is/reports and publications/health technology accessment/ouidenee
17	583	nttps://www.niqa.ie/reports-and-publications/nearth-technology-assessment/evidence-
18	584	summary-asymptomatic-transmission
19	F.0.F	10 UIOA Dratacal for avidence synthesis suprest. COVID 10 Uselth Information and
20	585	18 HIQA. Protocol for evidence synthesis support - COVID-19. Health Information and
21	586	Quality Authority, Ireland. Access date: 1st April 2020.
22	587	https://www.hiqa.ie/sites/default/files/2020-04/Protocol-for-HIQA-COVID-19-evidence-
23 24	588	synthesis-support_1-2.pdf.pdf
25		
26	589	19 Munn Z, Peters MD, Stern C, <i>et al.</i> Systematic review or scoping review? Guidance
27	590	for authors when choosing between a systematic or scoping review approach. BMC
28	591	medical research methodology 2018; 18 :143.
29		
30	592	20 Tricco AC, Langlois EV, Straus SE. <i>Rapid reviews to strengthen health policy and</i>
31 32	593	systems: a practical guide. World Health Organization Geneva 2017.
33		
34	594	21 Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation
35	595	from the sample size, median, range and/or interquartile range. BMC medical research
36	596	methodology 2014; 14 :135.
37		
38	597	Higgins JP, Thomas J, Chandler J, et al. editors. Cochrane handbook for systematic
39	598	reviews of interventions. John Wiley & Sons: 2019
40 41	550	
42	599	23 Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis.
43	600	Statistics in medicine 2001; 20 :825–40.
44		
45	601	Higgins JP, Thompson SG, Deeks JJ, <i>et al.</i> Measuring inconsistency in meta-analyses.
46	602	BMJ: British Medical Journal 2003; 327 :557.
47		
48 40	603	25 Higgins JP, Thompson SG. Controlling the risk of spurious findings from
5 0	604	meta-regression. Statistics in medicine 2004;23:1663–82.
51		
52	605	26 Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission
53	606	and mitigation strategies in the population of Ontario. Canada. CMAJ: Canadian Medical
54	607	Association Journal = Journal de L'association Medicale Canadienne 2020 192 (19) F497-
55	608	E505: DOI: https://doi.org/10.1503/cmai.200476
50 57	000	
57 58		
59		
60		

1		
2 3	<u> </u>	27 Li D. Dai G. Chan D. et al. Substantial undersumanted infaction facilitates the rapid
4	609 610	discomination of noval coronavirus (SARS CoV2). Science 2020, DOI:
5	611	10 1126/science abh3221
6 7	011	10.1120/301010221
8	612	28 Hoehl S. Rabenau H. Berger A. <i>et al.</i> Evidence of SARS-CoV-2 infection in returning
9	613	travelers from Wuhan. China. <i>New England Journal of Medicine</i> 2020: 382 :1278–80.
10		
11 12	614	He X, Lau EH, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of
13	615	COVID-19. Nature Medicine 2020;:1–4.
14		
15	616	30 Wei WE, Li Z, Chiew CJ, <i>et al.</i> Presymptomatic Transmission of SARS-CoV-2—
16 17	617	Singapore, January 23–March 16, 2020. Morbidity and Mortality Weekly Report
18	618	2020; 69 :411.
19	610	21 Tindala L. Wallings L. Coombo M. et al. Transmission interval estimator suggest pro
20	619	sumptomatic spread of COVID 10, https://www.modrviv.org/sontent/101101/202002
21	620	symptomatic spread of COVID-19. https://www.medixiv.org/content/101101/202003
22 23	621	0320029983 VI 2020.
24	622	32 Peak CM Kahn R Grad YH <i>et al.</i> Modeling the Comparative Impact of Individual
25	623	Quarantine vs. Active Monitoring of Contacts for the Mitigation of COVID-19. medRxiv
26 27	624	2020. doi: https://doi.org/10.1101/2020.03.05.20031088
27 28	•= ·	
29	625	33 Cheng H-Y, Jian S-W, Liu D-P, <i>et al.</i> High transmissibility of COVID-19 near symptom
30	626	onset. <i>medRxiv</i> 2020. doi: https://doi.org/10.1101/2020.03.18.20034561
31		
32 33	627	34 Linton NM, Kobayashi T, Yang Y, <i>et al.</i> Incubation period and other epidemiological
34	628	characteristics of 2019 novel coronavirus infections with right truncation: a statistical
35	629	analysis of publicly available case data. <i>Journal of clinical medicine</i> 2020; 9 :538.
36 27	620	25 Kramor M. Bigott D. Yu.B. et al. Epidemiological data from the pCoV 2010 Outbreak:
38	621	Early Descriptions from Publicly Available Data 2020
39	622	https://virological.org/t/epidemiological-data-from-the-prov-2019-outbreak-early-
40	622	descriptions from publicly available data/227 Accessed: 20th March 2020
41 42	033	descriptions-from-publiciy-available-data/337 Accessed. 29th March 2020
42 43	634	36 Xu B, Gutierrez B, Mekaru S, <i>et al.</i> Epidemiological data from the COVID-19 outbreak,
44	635	real-time case information. <i>Scientific data</i> 2020; 7 :1–6.
45		
46 47	636	37 Zhu H. Transmission Dynamics and Control Methodology of COVID-19: a Modeling
48	637	Study. <i>medRxiv</i> 2020;:2020.03.29.20047118. doi:10.1101/2020.03.29.20047118
49		
50	638	38 Piccolomiini EL, Zama F. Monitoring Italian COVID-19 spread by an adaptive SEIRD
51 52	639	model. <i>medRxiv</i> 2020. doi: https://doi.org/10.1101/2020.04.03.20049/34
52 53	640	39 Tuite AR Greer AL Eisman DN COVID-2019 Transmission Model 10-March-2020
54	641	Liniversity of Toronto
55	041	
56 57	642	40 Holshue ML, DeBolt C, Lindquist S, <i>et al.</i> First case of 2019 novel coronavirus in the
58	643	United States. New England Journal of Medicine 2020; 382 .
59		
60		

3	644	41 Kam K, Yung CF, Cui L, <i>et al.</i> A Well Infant with Coronavirus Disease 2019 with High
4 5	645	Viral Load. Clinical Infectious Diseases 2020. ciaa201, https://doi.org/10.1093/cid/ciaa201
5 6		
7	646	42 Kim JY, Ko J-H, Kim Y, <i>et al.</i> Viral load kinetics of SARS-CoV-2 infection in first two
8 9	647	patients in Korea. Journal of Korean medical science 2019;35.
10	648	43 Kujawski SA. Wong KK. Collins JP. <i>et al.</i> First 12 patients with coronavirus disease
11	649	2019 (COVID-19) in the United States <i>medRxiv</i> 2020 doi:
12	650	https://doi.org/10.1101/2020.03.09.20032896
13	050	11(193.77401.016) 10.1101/2020.03.03.20032030
14	651	44 Lim J. Jeon S. Shin H-Y. <i>et al.</i> Case of the index patient who caused tertiary
16	652	transmission of Coronavirus disease 2019 in Korea: the application of loninavir/ritonavir
17	652	for the treatment of COVID 10 pneumonia monitored by quantitative PT PCP. Journal of
18	035	Koroan Modical Science 2020:2E
19	054	Korean Medical Science 2020, 33 .
20	655	45 Marchand Sonécal V, Kozak P, Muharoka S, et al. Diagnosis and Management of Eirst
21	033	45 Walchalld-Sellecal X, Kozak K, Wubaleka S, et ul. Diagnosis and Wallagement of Thist
22	656	Case of COVID-19 in Canada: Lessons applied from SARS. <i>Clinical injectious Diseases</i> 2020.
23	657	46 Tap IV Ngoc NM That BTT at al Duration of viral detection in threat and rectum of
25	037	a nation with COVID 10, modBig 2020, doi:
26	058	a patient with COVID-19. <i>Medriv</i> 2020. doi.
27	659	https://doi.org/10.1101/2020.03.07.20032052
28	660	47 Theyarajan I. Nguyan TH. Keutsakes M. et al. Breadth of concemitant immune
29	000	47 Thevarajan i, Nguyen TH, Koutsakos Wi, et al. Breadth of conconnitant infinute
30	661	responses prior to patient recovery: a case report of non-severe COVID-19. Nature
32	662	Wiedicine 2020; 26 :453–5.
33	662	49 To KK Trang OT Chik Yan VC at al Consistent detection of 2010 novel coronavirus
34	003	46 TO KK, Tsang OT, Clink-fall FC, et al. Consistent detection of 2019 novel coronavirus
35	664	In saliva. Clinical injectious diseases: an official publication of the injectious Diseases
30 27	665	Society of America 2020. claa149, https://doi.org/10.1093/cld/claa149
38	666	40 Woolfel P. Corman VM. Guggomos W. et al. Clinical presentation and virological
39	000	49 Woener K, Cornan VIV, Guggerios W, et al. Chincal presentation and viological
40	667	assessment of nospitalized cases of coronavirus disease 2019 in a travel-associated
41	668	transmission cluster. <i>medRxiv</i> 2020. doi: https://doi.org/10.1101/2020.03.05.20030502
42	660	50 Mölfel D. Cormon VIA. Currence W. et al. Virelegial according to the provide lined
43	669	woller R, Corman VIV, Guggemos W, <i>et al.</i> Virological assessment of nospitalized
44 45	670	patients with COVID-2019. Nature 2020;:1–10.
46	671	E1 Vul T. Chan C. Zhu Z. at al. Clinical fastures and dynamics of viral load in imported and
47	671	Si Xu I, chefi C, Zhu Z, et ul. chinical features and dynamics of viral load in imported and
48	672	Official Publication of the International Conject for Infortious Diseases 2020
49	6/3	Official Publication of the International Society for Infectious Diseases 2020.
50	674	https://doi.org/10.1016/j.ijid.2020.03.022
51 52	C7F	52 Vouna DE Ona CWV Kalimuddin C <i>at al</i> Enidemialagia Fasturas and Clinical Course
53	675	52 Young BE, Ong SWX, Kalimuddin S, <i>et al.</i> Epidemiologic Features and Clinical Course
54	676	of Patients Infected with SARS-Cov-2 in Singapore. JAIVIA-Journal of the American Medical
55	677	Association 2020. 323(15):1488-1494. doi: 10.1001/jama.2020.3204.
56	670	F2 - Zoul Duon E Illuong M at al CARC CoV 2 simplified in supreminate manifester and simplified
57	٥/٥ د	200 L, Kuali F, πualig ivi, et al. SAKS-COV-2 viral load in upper respiratory specimens
50 50	679	of infected patients. <i>New England Journal of Medicine</i> 2020; 382 :1177–9.
60		

1		
2 3		
4	680	54 Cao B, Wang Y, Wen D, <i>et al</i> . A trial of lopinavir–ritonavir in adults hospitalized with
5	681	severe Covid-19. New England Journal of Medicine 2020. 382:1787-1799
6 7 8	682	DOI: 10.1056/NEJMoa2001282
9	683	55 Chen W, Lan Y, Yuan X, <i>et al.</i> Detectable 2019-nCoV viral RNA in blood is a strong
10 11	684	indicator for the further clinical severity. <i>Emerging Microbes & Infections</i> 2020; 9 :469–73.
12	685	56 Goh KJ, Choong MC, Cheong EH, <i>et al.</i> Rapid Progression to Acute Respiratory
13 14	686	Distress Syndrome: Review of Current Understanding of Critical Illness from COVID-19
15 16	687	Infection. Ann Acad Med Singapore 2020;49:1–9.
17	688	57 Hill KJ, Russell CD, Clifford S, <i>et al.</i> The index case of SARS-CoV-2 in Scotland: a case
18 19	689	report. The Journal of Infection 2020; DOI:https://doi.org/10.1016/j.jinf.2020.03.022
20	690	58 Liu Y. Yan L-M. Wan L. <i>et al.</i> Viral dynamics in mild and severe cases of COVID-19. <i>The</i>
21 22 22	691	Lancet Infectious Diseases 2020; DOI:https://doi.org/10.1016/S1473-3099(20)30232-2
23 24	692	59 To KK-W Tsang OT-Y Leung W-S <i>et al.</i> Temporal profiles of viral load in posterior
25	693	oronharvngeal saliva samples and serum antibody responses during infection by SARS-
26	694	CoV-2: an observational cohort study. The Lancet Infectious Diseases 2020:
27	695	DOI:https://doi.org/10.1016/S1/73-3099/20)30196-1
28	095	DOI.https://doi.org/10.1010/31473-3039(20/30190-1
29 30	696	60 Fang 7 Zhang Y Hang C <i>et al.</i> Comparisons of nucleic acid conversion time of SARS-
31	697	CoV-2 of different samples in ICU and non-ICU natients. The Journal of Infection 2020:
32	6097	cov-2 of different samples in cov and non-icov patients. The sournal of injection 2020, $cov-2v$
33	098	30103-4433(20)30135-0. doi: 10.1010/J.jiii.2020.03.013.
34	699	61 Kam KO, Yung CE, Cui L, et al. A Well Infant with Coronavirus Disease 2019 (COVID-
35	700	19) with High Viral Load. Clinical Infectious Diseases: An Official Publication of the
30 37	700	Infectious Diseases Society of America 2020: ciaa201 https://doi.org/10.1093/cid/ciaa201
38	/01	
39	702	62 Kimball A, Hatfield KM, Arons M, <i>et al.</i> Asymptomatic and Presymptomatic SARS-
40 41	703	CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility-King County,
41 42	704	Washington, March 2020. MMWR Morbidity and mortality weekly report 2020;69.
44	705	63 Ferretti L, Wymant C, Kendall M, <i>et al.</i> Quantifying SARS-CoV-2 transmission suggests
45	706	epidemic control with digital contact tracing. <i>Science</i> 2020. DOI:
46	707	10.1126/science.abb6936
47		
48	708	64 Lavezzo E, Franchin E, Ciavarella C, <i>et al.</i> Suppression of COVID-19 outbreak in the
49 50	709	municipality of Vo, Italy. <i>medRxiv</i> 2020; doi:
50	710	https://doi.org/10.1101/2020.04.17.20053157
52		
53	711	65 Cereda D, Tirani M, Rovida F, <i>et al.</i> The early phase of the COVID-19 outbreak in
54	712	Lombardy. Italy [published online ahead of print March 20, 2020] arXiv 2020;
55 56	713	arXiv:2003.09320
57		
58		
59		
60		

1		
2	74.4	CC Lies L For C Char L et al Enidemiale rise and divised share staristics of COV/ID 10 in
4	714	66 Liao J, Fan S, Chen J, <i>et al.</i> Epidemiological and clinical characteristics of COVID-19 in
5	715	duolescents and young duols. MedRXIV 2020. doi:
6 7	/16	nups://doi.org/10.1101/2020.03.10.20032136
8	717	67 Kupferschmidt K. Study claiming new coronavirus can be transmitted by people
9	718	without symptoms was flawed Science 2020:3
10	,10	
11	719	68 Hu F, Chen F, Wang Y, <i>et al.</i> Failed detection of the full-length genome of SARS-CoV-2
12	720	by ultra-deep sequencing from the recovered and discharged patients retested viral PCR
14	721	positive. <i>medRxiv</i> 2020. doi: https://doi.org/10.1101/2020.03.27.20043299
15		
16	722	69 Xing Y, Ni W, Wu Q, <i>et al.</i> Prolonged presence of SARS-CoV-2 in feces of pediatric
1/ 18	723	patients during the convalescent phase. <i>medRxiv</i> 2020; doi:
19	724	https://doi.org/10.1101/2020.03.11.20033159
20		
21	725	70 Fu R, Gartlehner G, Grant M, <i>et al.</i> Conducting quantitative synthesis when
22	726	comparing medical interventions: AHRQ and the Effective Health Care Program. Journal
23 24	727	of clinical epidemiology 2011; 64 :1187–97.
25	720	71 Criffin INA Colling AD Hunt K at al. A rapid review of available avidence on the carial
26	728	interval and concertion time of COVID 10, modBuilt, 2020, doi:
27	729	Interval and generation time of COVID-19. medRxiv. 2020. doi:
28 29	730	https://doi.org/10.1101/2020.05.08.20095075
30	731	72 McAloon CG. Collins A. Hunt K et al. The incubation period of COVID-19: A rapid
31	732	systematic review and meta-analysis of observational research, medRxiv, 2020, doi:
32	732	https://doi.org/10.1101/2020.04.24.20073957
33 34	/55	<u>Inteps.//doi.org/10.1101/2020.04.24.200/3557</u>
35	734	73 Lane EA, Barrett DJ, Casey M, et al. Country differences in hospitalisation,
36	735	length of stay and admission to Intensive Care Units due to SARS-CoV-2 infection: a rapid
37	736	review of available literature. medRxiv. 2020. doi:
38	737	https://doi.org/10.1101/2020.05.12.20099473
40		
41	738	74 Zhou F, Yu T, Du R, <i>et al.</i> Clinical course and risk factors for mortality of adult
42	739	inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet
43	740	2020; DOI:https://doi.org/10.1016/S0140-6736(20)30566-3
44 45	711	75 Forguson N. Loudon D. Nadioti Cilani C. at al. Papart O. Impact of non
46	741	75 Ferguson N, Laydon D, Nedjali Ghani G, <i>et al.</i> Report 9: Impact of non-
47	742	domand 2020; DOI: https://doi.org/10.25561/77482
48	743	demand. 2020, DOI: https://doi.org/10.25501/77482
49 50	744	76 Cai L Xu L Lin D <i>et al</i> A Case Series of children with 2019 novel coronavirus
51	745	infection: clinical and enidemiological features. <i>Clinical Infectious Diseases</i> 2020: ciaa198
52	746	doi: 10 1093/cid/ciaa198
53	, 10	
54 55	747	77 Cai Q, Huang D, Ou P, <i>et al.</i> COVID-19 in a Designated Infectious Diseases Hospital
56	748	Outside Hubei Province, China. Allergy 2020. https://doi.org/10.1111/all.14309
57		
58		
59 60		
00		

1		
2		
5 4	749	78 Chen D, Xu W, Lei Z, <i>et al.</i> Recurrence of positive SARS-CoV-2 RNA in COVID-19: A
5	750	case report. International Journal of Infectious Diseases 2020.
6 7	751	DOI:https://doi.org/10.1016/j.ijid.2020.03.003
8	752	79 Cheng S-C, Chang Y-C, Chiang Y-LF, <i>et al.</i> First case of Coronavirus Disease 2019
9	753	(COVID-19) pneumonia in Taiwan. Journal of the Formosan Medical Association 2020;
10	754	https://doi.org/10.1016/j.jfma.2020.02.007
11		
12	755	80 Lee N-Y, Li C-W, Tsai H-P, <i>et al.</i> A case of COVID-19 and pneumonia returning from
14	756	Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic. Journal of
15 16	757	Microbiology, Immunology and Infection 2020; S1684-1182(20)30060-8.
17	758	Ling Y, Xu S-B, Lin Y-X, <i>et al.</i> Persistence and clearance of viral RNA in 2019 novel
18	759	coronavirus disease rehabilitation patients. Chinese medical journal 2020; 133(9):1039-
19 20	760	1043. doi: 10.1097/CM9.00000000000774.
20		
22	761	Liu F, Xu A, Zhang Y, <i>et al.</i> Patients of COVID-19 may benefit from sustained
23	762	lopinavir-combined regimen and the increase of eosinophil may predict the outcome of
24	763	COVID-19 progression. International Journal of Infectious Diseases 2020.
25 26	764	DOI:https://doi.org/10.1016/i.iiid.2020.03.013
20		
28	765	83 Qu YM, Kang EM, Cong HY. Positive result of Sars-Cov-2 in sputum from a cured
29 30	766	patient with COVID-19. Travel Medicine and Infectious Disease 2020;:101619–101619.
31	767	84 Yuan J, Kou S, Liang Y, <i>et al.</i> Clinical Characteristics on 25 Discharged Patients with
32	768	COVID-19 Virus Returning. <i>medRxiv</i> 2020;:2020.03.06.20031377.
33 34	769	doi:10.1101/2020.03.06.20031377
35		
36	770	85 Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai,
37	771	China. Journal of Infection 2020. https://doi.org/10.1016/j.jinf.2020.03.004
38 39	772	86 Le HT Nguyen LV Tran DM <i>et al.</i> The first infant case of COVID-19 acquired from a
40	773	secondary transmission in Vietnam. The Lancet Child & Adolescent Health 2020
41	773	https://doi.org/10.1016/S2252.4642(20)20001.2
42 43	//4	https://doi.org/10.1010/32332-4042(20)30091-2
44	775	87 Oiu H. Wu J. Hong L. <i>et al.</i> Clinical and epidemiological features of 36 children with
45	776	coronavirus disease 2019 (COVID-19) in Zheijang. China: an observational cohort study.
46	777	The Lancet Infectious Diseases 2020 https://doi.org/10.1016/S1473-3099(20)30198-5
47		
48 70	778	88 Wu Y. Guo C. Tang L. <i>et al.</i> Prolonged presence of SARS-CoV-2 viral RNA in faecal
	779	samples. The Lancet Gastroenterology & Hepatology 2020:5:434–5.
51		······································
52	780	89 Lourenço J, Paton R, Ghafari M, <i>et al.</i> Fundamental principles of epidemic spread
53	781	highlight the immediate need for large-scale serological surveys to assess the stage of the
54 55	782	SARS-CoV-2 epidemic. <i>medRxiv</i> 2020. doi: https://doi.org/10.1101/2020.03.24.20042291
55 56		
57	783	
58		
59	784	
60		

Tables and figures

Figure 1: Simulation of the parameter distribution inferred for duration infectious period for asymptomatic cases (T2) inferred infectious period for Davies et al. (2020a), grey/blue curve, Davies et al. (2020b) pink curve [model priors]. Green curve: Ma et al. (2020). Histogram is the distribution of asymptomatic cases to two clear tests reported by Hu et al. (2020). Reference lines are point estimates reported from Zhou et al. (2020), Li et al. (2020), and Tuite et al. (2020a & b).[7,8,14,15,26,27,39,71]

Figure 2: Simulation of the parameter distribution used for T3 (the duration of the pre-symptomatic infectious period for those infected individuals who subsequently develop symptoms). Curves represent simulated approximations of distributions, given information provided from primary literature. Vertical lines represent point estimates where distributions could not be inferred (see table 2). 1. Peak et al. [posterior]; 2. Davies et al. 2020b [prior]; 3. Rothe et al. 2020; 4. He et al. 2020; 5. Davies et al. 2020a [prior]; 6. Wei et al. 2020. [9,14,15,29,30,32]

- Figure 3: Forest plot of the mean duration from onset of symptoms to death or recovery (T5) based on virological studies
- Figure 4: Frequency distribution of T5, time from onset of symptoms to recovery (here hospital discharge or death), using patient level raw data from Kraemer et al. ([35,36]; pink bars), Linton et al. ([34]; purple bars) and Tindale et al. ([31]; green bars). Blue solid line is the kernel density of the aggregated dataset Dashed lines represent the mean and 95%CI from a random effects regression model.
- Figure 5: Composite inferred model for cycle threshold (CT) value changes from serial RT-PCR testing for SARS-COV2; currently uncertain whether peak viral load typically occurs prior to, on, or post-symptom onset (primary literature informing this model includes [29,50,53,59]).

Table 1: Reported infectious period (IP) for asymptomatic cases (T5 parameter) from virological

studies where serial diagnostic tests were undertaken to infer IP; tracking studies where IP is

inferred from contact tracing; modelling studies where IP is reported as a prior (assumed parameter

value) or an posterior estimate.

NO.	Study	Countries	Parameter (days)	n	tendency reported	variati on (days; inclus.)	Comment
Virolo	gical studies		-		-		
[74]	Zhou et al. (2020)	China	11 days	1	Max		This study serially swabbed and tested symptomatic (17) and asymptomatic (1) cases via RTPCR. The single asymptomatic case tested positive up to 11 days post contact with an infected patient (presumed point of exposure).
7]	Hu et al. (2020)	China	9.5 days	24	Median	1-21 range	Serial testing. Period between "onset" (where onset relates to first positive test) and clearance, adjudged via two negative RTPCR tests, deemed by the authors to be the 'communicable period'. IQR: 3.5-13
Track	ing studies						
3]	Ma et al. (2020)	China, Germany, Japan, Singapore, South Korea, Malaysia, Vietnam	7.25 days*	49	Mean	5.91- 8.69 (95%CI)	*Ma et al. (2020) does not report infectious period for asymptomatic cases explicitly within their paper. The authors estimated the infectious period as the upper estimated latent period minus the serial interval, using a dataset of 1155 cases from several countries (latent period was estimated with 11 infector-infectee pairs; serial interval was estimated from 689 infector-infectee pairs). Ma et al. (2020) reported a mean upper limit of latent period of 2.52 days; the mean serial interval for asymptomatic cases (using date of diagnosis for onset) was estimated to be 9.77 (94%CI: 8.43, 11, 21)

[7]	Hu et al. (2020)	China		3		4-9 range	Cluster of infection within a family, where the primary case was asymptomatic. The transmissions to secondary cases occurred over a period 4-9 days post the presumed point of exposure for the primary case.
Mode	lling studies			1	1	1	· · · · ·
[27]	Li et al. (2020)	China	3.5* [posterior from a model estimating duration for undocumen ted cases]		Median	3.19- 3.78 95%CI	Li et al. (2020) do not explici attempt to model asymptomatic cases, or thei infectious duration. Instead the population infected is divided into 'documented' a 'undocumented'. Document were all cases where patient had symptoms severe enoug to be confirmed infected; al other cases were considered undocumented. Therefore, this estimate represents asymptomatic and 'mild' cases. The 95%CI around the median infectious period estimate was 3.19-3.78
[26,39	 Fuite et al. (2020a &b) 	Canada	6-6.5 [Prior]	. 7	[Fixed parameter within a deterministi c model]		Mathematical model [deterministic], with a fixed parameter estimate of 6 or days. Important to note that duration for 'mild' was equa to severe cases.
[14]	Davies et al. (2020) (a)	UK	7 days [Prior]		Mean		Model with asymptomatic infection compartment. Modelled with a gamma distribution, beta 1.4; alpha Despite, the subclinical aspe of this parameter, it could b considered analogous to tot infectious period without intervention.
[15]	Davies et al. (2020) (b)	UK	5 days [Prior]		Mean		Model with asymptomatic infection compartment. Modelled with a gamma distribution, k=4. Authors: "Assumed to be the same duration as total infectious period for clinical cases, including preclinical transmission"

Table 2: Reported infectious period (IP) for pre-symptomatic cases (T3 parameter) from virological
studies where serial diagnostic tests were undertaken to infer IP; tracking studies where IP is
inferred from contact tracing; modelling studies where IP is reported as a prior (assumed parameter

819 value) or an posterior estimate.

1 2 3

4

5

6

	Study	Location	Parameter (days)	Central tendency reported	Variation (days; inclus.)	Comment			
	Virological st	udies							
3]	Pan et al. (2020)	Beijing, China	1	Median		Case study of two individuals tracked due to exposure to an infected patient was serially tested prior to onset of symptoms.			
8]	Hoehl et al. (2020)	Flight from Wuhan to Germany	1	Median		Case study of serially tested at risk cohort flying from Wuhan to Germany. Two patients were asymptomatic test positive; additionally virus isolation was achieved, indicating potential infectiousness.			
	Tracking studies								
1]	Huang et al. (2020)	Nanjing, China	4	Median	3-5 range	Follow-up tracing case study cluster of infection within a family demonstrating pre- symptomatic infection (n=10)			
]	Rothe et al. (2020)	Germany	2	Median	1-3 range	Tracing case study of a cluster of infections whereby presymptomatic transmission occurred (n=3).			
29]	He et al. (2020)	Vietnam, Malaysia, Japan, China, Taiwan, USA, Singapore	2.3	Mean	95% CI, 0.8–3.0	Tracing paper infector- infectee pairs. Estimated from serial interval and incubation periods. N=77			
0]	Wei et al. (2020)	Singapore	2.5	Median	2-3 (IQR)	Tracing study investigating pre- symptomatic infections from primary cases to secondary cases in 7 clusters. N=8 primary cases. T3 estimated as the min. days between transmission period (TP) and primary case			

						symptom onset, when TP straddled >1 day. Range: 2-6 days.
	Modelling stu	dies	1		1	
[32]	Peak et al. (2020)	Massachusetts	0.8 [estimate]	Mean	-0.29-1.98 95% CI*	Modelling paper estimated under two scenarios – a serial interval of 4.8 days or 7.5 days. Under scenario one, the model estimated a period of pre-symptomatic transmission (median: 0.71). * the lower range was fixed at zero as the model allowed for no pre-symptomatic infectious case.
[37]	Zhu et al. (2020)	Wuhan, China	1.0 [estimate]	Mean		Modelling paper. Model estimated point value – This is a model derived value
[14]	Davies et al. (2020) (a)	UK	2.4 [prior]	Mean		Modelling paper. Gamma distribution; k=5.
[15]	Davies et al. (2020) (b)	UK	1.5 [prior]	Mean		Modelling paper. Gamma distribution: k=4
[26,39]	Tuite et al. (2020a & b)	Canada	0.5, 1 [prior]	Fixed		Modelling paper. Fixed parameter within a deterministic model.
[75]	Ferguson et al. (2020)	UK	0.5 [prior]	Fixed		Modelling paper. Fixed parameter within this model, whereby infectiousness was assumed to begin 12 hours symptom onset.
[31]	Tindale et al. (2020)	Tianjin, China, and Singapore	2.9-2.6 [estimate]	Mean	1.2-8.2 mean range, depending on early or late cases, or whether in Tianjin, Singapore	Statistical modelling study estimating period pre-symptomatic transmission inferred from estimates of serial interval and incubation periods for populations in Tianjin and Singapore (n=228).
820					0.1.2.0	1

59 60 Table 3: Reported infectious period (IP) for post-symptomatic cases (T5 parameter) from virological studies where serial diagnostic tests were undertaken to infer IP [onset to ≥2 tests]; tracking studies where IP is inferred from patient histories from onset to recovery or death; modelling studies where

IP is reported as a prior (assumed parameter value) or an posterior estimate.

8 9 10 11 12 13	No.	Study	Location	Parameter (days)	Central tendenc y reporte d	Variation (days; inclus.)	Comment					
14 15		Virological studies										
16 17 18 19	[76]	Cai et al. 2020 (a)	China	12	Median	6-22 range	Serial testing study of n=10 mild cases RT-PCR confirmed in children. IQR: 8-15 days					
20 21 22 23	[77]	Cai et al. 2020 (b)	China	14	Median	9-19 (IQR)	Serial testing study with n=298 confirmed (RT-PCR) cases treated within hospital setting					
24 25 26 27 28 29 30 31 32 33	[78]	Chen et al.(2020)	China	12	Max.		Single case study for a patient admitted to hospital where RT-PCR serial testing was undertaken. Patient had an additional positive test at day 17, but subsequently tested negative					
34 35	[79]	Cheng et al. (2020)	China	21	Max.		Case study of single patient serially tested by RT-PCR					
36 37 38 39 40 41 42	[7]	Hu et al. (2020)	China	12	Median	12-14 (IQR)	Serial testing study of patients who were first tested (qRT-PCR) when asymptomatic; this subset subsequently developed symptoms (n=5).					
43 44 45 46 47	[42]	Kim et al. (2020)	Korea	15.5	Median	14-17 (range)	Serial testing of two confirmed cases via RT-PCR. Viral load highest during early phase of infection (day 3-5).					
48 49 50 51 52	[43]	Kujawski et al. (2020)	USA	26	Max.		Serial testing of two confirmed cases via RT-PCR. Mild to moderate symptoms.					
53 54 55	[80]	Lee et al. (2020)	Taiwan	20	Max.		Serial testing (RT-PCR) of a single patient hospitalised presenting with pneumonia					
56 57 58 59 60	[44]	Lim et al. (2020)	South Korea	16	Max.		Serial testing (RT-PCR) of a single patient hospitalised presenting with pneumonia. Two clear tests day 11, virus					

						detectible again up to o 16.
[81]	Ling et al. (2020)	China	9.5	Median	2-22 (range)	Serial testing of two confirmed cases via RT- n=66. IQR: 6-11 days, oropharyngeal samplin Mix of adult and childre
[82]	Liu et al. (2020)	China	11	Median	7-18 range	Serial testing of two confirmed cases via RT- n=10. 10-13 (IQR); adul mild, moderate, and se cases.
[45]	Marchand- Senéca et al. (2020)	Canada	23	Max		Serial testing (RT-PCR) single patient hospitalis presenting with pneum
[3]	Pan et al. (2020)	China	10	Median	8-12 range	Serial testing (RT-PCR) two patients hospitalise Viral loads peaked days post-onset.
[83]	Qu et al. (2020)	China	22	Max		Serial testing (RT-PCR) single patient hospitalis
[46]	Tan et al. (2020)	Vietnam	16	Max		Serial testing (RT-PCR) single patient hospitalis throat sample.
[47]	Thevarajan et al. (2020)	Australia	7	Max		Serial testing (RT-PCR) single patient hospitalis throat sample. Highest load on first test at day nasopharyngeal; day 6 sputum.
[69]	Xing et al.(2020)	China	14	Median		Serial testing (RT-PCR) three (children) patient hospitalised. Mild-mod infecting. Positive viral samples from faeces up weeks post-symptoms.
[52]	Young et al. (2020)	Singapore	12.5	Median		Serial testing (RT-PCR) patients hospitalised. Adults. Viral load peake over testing series at da since onset.
[84]	Yuan et al. (2020)	China	6	Median	4-10 (IQR)	Serial testing (RT-PCR) patients hospitalised. Children and adults. "N severe" cases.
[74]	Zhou et al. (2020)	China	20	Median	16-23 IQR	Serial testing (RT-PCR) 191 patients hospitalise two hospitals. Adults. 5 died. Survivors (n=137) Median (IQR) 20.0 days (17.0-24.0): Non surviv

						days (15.0–22.0); Shed continued until death. Inferred shedding perio 37 days.
[85]	Chen J. et al. (2020)	China	11	Median	10-12 (95%Cl)	Serial testing (RT-PCR) 242 patients hospitalise Adults. 90% mild/asymptomatic; 10 severe/critical.
[60]	Fang et al. (2020)	China	15.7	Mean	6.7 (sd)	Serial testing (RT-PCR) non-ICU patients hospitalised. Adults. Na samples.
[60]	Fang et al. (2020)	China	22.3	Mean	3.6 (sd)	Serial testing (RT-PCR) ICU patients hospitalise Adults. Nasal samples.
[57]	Hill et al. (2020)	Scotland	9	Max.		Serial testing (RT-PCR) single patient (adult) hospitalised; nasal sam [throat sample: 6 days] Mild.
[86]	Le et al. (2020)	Vietnam	12	Max.		Serial testing (RT-PCR) single patient (infant) hospitalised. Mild.
[58]	Liu et al. (2020)	China	10	Max.	7	Serial testing (RT-PCR) patients hospitalised. Adults. Mixed Mild/sev cases. N=76. 90% "earl viral clearance" within 10days
[87]	Qiu et al. (2020)	China	10	Mean	7-22 range	Serial testing (RT-PCR) patients hospitalised. Children. N=36. Mild ar moderate cases.
[59]	To et al. (2020)	Hong Kong	25	Max.	1	Serial testing (RT-PCR) patients hospitalised. N Seven patients reporte viral detection >20 day viral load peaked durin first week post-onset o symptoms.
[88]	Wu et al.	China	16.1	Mean	6.7 (sd)	Serial testing (RT-PCR) patients hospitalised. Adults. N=74. Severe an non-severe cases.
	Tracking studi	ies				
[31]	Tindale et al.	Singapore	18	Median	9-33 range	Time from onset to

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Kraemer et al. (2020a); [later published as: Xu et al.	Various	19	Median	3-37 range	Time from onset to discharge; Range: 3-37 n=70
[34]	2020] Linton et al. (2020)	Wuhan, China	13	Median	6-41 range	Time from onset to dea range 6-41
[35,36]	Kraemer et al. (2020b)	Japan and China	19.25	Mean	12-24 range	Time from onset to dea
[49,50]	Wölfel et al. (2020)	Germany	3-8 days	absolute	3-8 range	Tracked infection in micases in Germany, undertaking viral isolat studies to assess active replication across a nur of samples sites (upper respiratory tract, blood urine, faeces) over the duration of infection. 5 isolation success was achieved up to 9.78 (99 8.45-21.78) days post of n=9
826				4		

Table 4: Reported infectious period (IP) for symptomatic cases (T3+T5 parameter) from virological
studies where serial diagnostic tests were undertaken to infer IP [exposure to ≥2 neg. tests]; tracking
studies where IP is inferred from patient histories from onset to recovery or death; modelling studies
where IP is reported as a prior (assumed parameter value) or an posterior estimate.

No.	Study	Location	Parameter (days)	Central tendency reported	Variation (days; inclus.)	Comment
	Tracking studie	es		1		1
[29]	He et al. (2020)	Vietnam, Malaysia, Japan, China, Taiwan, USA, Singapore	9.3 days	Mean	7.8-10 (95%CI*)	The paper reported on 77 infector-infectee pairs which were sequential/serially tested, using publicly available data. Viral dynamics (Guangzhou, China; N=94) interpreted by the authors suggested an infectious period starting 2.3 (95% Cl, 0.8–3.0 days) days prior to symptoms, peaking 0.7 days (95% Cl, –0.2–2.0 days), continuing up to 7 days from onset. * Cl from pre-symptom infectious period only.
[8]	Ma et al. (2020)	Various	~5 days	Median	Range 0- 24	The authors estimated the infectious period as latent minus the serial interval, using a dataset of 1155 cases. Range 0-24; IQR: 2-9; calculated from data presented within the paper.
	Modelling stud	dies				
[27]	Li et al. (2020)	China	3.45 days [posterior estimated from model for documented cases]	median	95%Cl for the mean: 3.19, 3.72	Mathematical model. Priors for <u>mean</u> documented infectious period was a flat [uniform] distribution 2-5. 'Documented' cases were defined as those severe enough to be confirmed. This corralling of the infectious period relative to other

						studies should take into account that the distribution is used for the central tendency, not the whole distribution.
[26,39]	Tuite et al. (a, b) (2020)	Canada	6-6.5 days [prior; fixed parameter within a deterministic model]	Fixed parameter		Mathematical model [deterministic], with a fixed parameter estimate of 6.5 days (a) and 6 days (b), respectively. Important to note that duration for 'mild' was equal to severe cases.
[89]	Lourenco et al. (2020)	UK	~3-5 days [posterior; approximate depending on scenario tested]	mean	95%ci of 3-6 days	Mathematical model. The <u>prior</u> used was given a Gaussian distribution (normal curve); mean 4.5; SD 1; approximate 95%ci of 3-6 days. The reported posterior of this parameter was presented graphically and depended on RO and proportion at risk. Depending on the scenarios tested, mean duration of infectiousness appeared to vary from 3-5 days.
[37]	Zhu et al. (2020)	Wuhan, China	12.5 days [posterior estimated from model]	Mean	11.4 variance	Mathematical model. The parameter was estimated using a Weibull distribution. The prior for this parameter was 10 days. The posterior variance around the mean was 11.4, and therefore the distribution had a long tail. This study was a modelling [SEIR extended model].
[15]	Davies et al. (b) (2020)	UK	7 days [Prior]	Mean		Model with asymptomatic infection compartment. Modelled with a

						gamma distribution, beta 1.4; alpha 5. Despite, the subclinical aspect of this parameter, it could be considered analogous to total infectious period without intervention.
	[14]	Davies et al. (b) (2020)	UK	5 days [Prior]	Mean	Model with asymptomatic infection compartment. Modelled with a gamma distribution, k=4. Authors: "Assumed to be the same duration as total infectious period for clinical cases, including preclinical transmission"
	[38]	Piccolomini and Zama (2020)	Italy	20 days [Prior]	Fixed	Parameter estimate assumed for the infectious period within an SEIRD model, fitted to data from the epidemic in Italy.
832 833						

211x152mm (300 x 300 DPI)

Figure 2: Simulation of the parameter distribution used for T3 (the duration of the pre-symptomatic infectious period for those infected individuals who subsequently develop symptoms).

881x635mm (72 x 72 DPI)

Figure 4: Frequency distribution of T5, time from onset of symptoms to recovery (here hospital discharge or death), using patient level raw data

169x169mm (300 x 300 DPI)

Figure 5: Composite inferred model for cycle threshold (CT) value changes from serial RT-PCR testing for SARS-COV2

BMJ Open: first published as 10.1136/bmjopen-2020-039856 on 5 August 2020. Downloaded from http://bmjopen.bmj.com/ on April 7, 2024 by guest. Protected by copyright.

211x152mm (300 x 300 DPI)

1 Supplementary material 1

Figure S1: Conceptual model of the key temporal parameters impacting COVID-19 infection

4 progression over time. T1: Latent period; T2: Asymptomatic infectious period; T3: Pre-

5 symptomatic infectious period; T4: Symptom onset to diagnosis [self-isolation] or

6 hospitalisation; T5: Symptom onset to removed [death or recovery]

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	51	of	62
------	----	----	----

3 4

Supplementary material 2:Data for meta-analysis

e 51 of 62								BMJ	Open				6/bmjopen-2020-							
26	Supplementary	material 2:	:Data f	or meta-an	alysis								039856 c							
	paper	country	ct	ct_type	range 6-22	median	iqr	min	max	first_qt	third_qt	n	თ mean თ გე	sd	se		severity	sev_bin	kid_cat	
	Cai et al. (2020a)	China	12	Median	range	12	9-19	6	22	2 8	15	10	g <u>p</u> ist 2		6	2	mild mild-	0	2	1
	Cai et al. (2020b)	China	14	Median		14	(IQR)			9	19	298	0 <u>1</u> 20		7	0	severe	1	2	2
	Chen et al (2020)	China	12	Max.								1	 102		0	0				2
	Chen J. et al. (2020) Cheng et al.	China	11	Median	10-12 (95%CI)	11						242	ownlgade		8	3	mild- severe	1	2	2
	(2020)	China	21	Max.								1	21		0	0	severe	1	2	2
	Fang et al. (2020a) Fang et al.	China	16	Mean	6.7 (sd)							24	om 增ttp:/		7	1	mild- moderate	0	2	2
	(2020b)	China	22	Mean	3.6 (sd)							8	22		4	1	severe	1	2	2
	Hill et al. (2020)	Scotland	9	Max.			12-14					1	njøpen		0	0	mild	0	2	2
	Hu et al. (2020)	China	12	Median	14-17	12	(IQR)			12	14	5	. <mark>ga</mark> nj.c		2	1	mild mild-	0	2	2
	Kim et al. (2020) Kujawski et al.	Korea	16	Median	(range)	16		14	17			2	0 1 9 0		3	2	moderate mild-	0	2	2
	(2020)	USA	26	Max.								1			0	0	moderate	0	2	2
	Le et al. (2020)	Vietnam	12	Max.								1	17		0	0	mild	0		1
	Lee et al. (2020)	Taiwan South	20	Max.								1	7, 2 02₂		0	0	severe	1	2	2
	Lim et al. (2020)	Korea	16	Max.	2-22							1	4 敗 gu		0	0			2	2
	Ling et al. (2020)	China	10	Median	(range) 7-18	10		2	22	2 6	11	66	unget. F		4	0	mild-		-	1
	Liu et al. (2020)	China	11	Median	range	11		7	18	3 10	13	10	²r o tect		3	1	severe mild-	1	Â	2
	Liu et al. (2020)	China	10	Max.								76	1 <u>0</u>				severe	1	2	2
	Marchand- SenŽca et al.	Canada	23	Max								1	by com		0	0				
												-	yright.			-				

									BMJ Ope	en				6/bmjope					Page 5	2 of 62
1 2 3 4		(2020)												n-2020-0398						
5						8-12								56 or						
6 7		Pan et al. (2020)	China	10	Median	range	10		8	12			2	192 192	3	2				
8		Oiu at al. (2020)	China	10	Moon	7-22			7	22			26	BhBn	4	1	mild- modorato	0		1
9		Qiu et al. (2020)	China	22	Max	Tange			7	22			1	な	4	1	moderate	0		T
10		Tan et al. (2020)	Vietnam	16	Max								1	20 <u>1</u>	0	0	severe	1		
12 13		Thevarajan et al.	Australia	-10	Max								1	Down	0	0	mild- moderate	0		
14		(2020)	, lustrunu	,	ind,								-	load	Ū	Ũ	mild-	Ū		
15		To et al. (2020)	Hong Kong	25	Max.								7	28	0	0	severe	1		2
16 17 18		Wu et al. (2020)	China	16	Mean	6.7 (sd)							74	roment	7	1	mild- severe	1		2
19 20		Xing et al (2020)	China	14	Median		14						3	tp://bm			mild- moderate	0		1
21 22		Young et al. (2020)	Singapore	12	Median		12		1	24			18	jop <u>r</u> n.	6	3	mild- moderate	0		2
23 24		Yuan et al. (2020)	China	6	Median		6	4-10 (IQR)			4	10	25	bmj:cc	5	1	mild- moderate	0		1
25 26	27	Zhou et al. (2020)	China	20	Median		20	16-23 IQR			16	23	191	om/@n /	5	0	severe	1		2
27 28 20	28													April 7,						
29 30 21														2024						
32														by ç						
33														gues						
34 25														÷ P						
35 36														rote						
37														ctec						
38														d by						
39														6						
40														oyri						
41 42														ght.						
+2 43					_				5											
44					For	peer review of	only - h	ttp://bmj	open.bm	nj.com/s	ite/about/	guidelir	ies.xhtml							
45																				
46																				

Page 5	53 of 62					BMJ Open		6/bmjoper
1 2 3 4	29	Supplement	ary material 3: Data for time t	o recovery or	death			2020-03985
5		study	overall_time_disc_death	death	discharge	xb_t5	upp95	low95 ବ୍
6 7		kraemer	20	0	1		15.13663	20.99411 🦉
7 8		kraemer	16	0	1	18.06537	15.13663	20.99411 فَ
9		kraemer	24	0	1	18.06537	15.13663	20.99411 ^{kg}
10		kraemer	24	0	1	18.06537	15.13663	20.99411 🕅
11		kraemer	25	0	1	18.06537	15.13663	20.99411 _U
12		kraemer	22	0	1	18.06537	15.13663	20.99411 Š
14		kraemer	28	0	1	18.06537	15.13663	20.99411
15		kraemer	16	0	1	18.06537	15.13663	20.99411
16 17		kraemer	25	0	1	18.06537	15.13663	20.99411 ⁻
17		kraemer	37	0		18.06537	15.13663	20.99411 🚊
19		kraemer	15	0	1	18.06537	15.13663	20.99411 🞽
20		kraemer	14	0	1	18.06537	15.13663	20.99411 💐
21 22		kraemer	26	0	1	18.06537	15.13663	20.99411 💆
22		kraemer	17	0	1	18.06537	15.13663	20.99411 5
24		kraemer	20	0	1	18.06537	15.13663	20.99411 🦉
25		kraemer	14	0	1	18.06537	15.13663	20.99411 💐
26 27		kraemer	19	0	1	18.06537	15.13663	20.99411 🛼
27		kraemer	26	0	1	18.06537	15.13663	20.99411 🚊
29		kraemer	28	0	1	18.06537	15.13663	20.99411 ^{,\v}
30		kraemer	24	0	1	18.06537	15.13663	20.99411 🕅
31		kraemer	26	0	1	18.06537	15.13663	20.99411 🤤
33		kraemer	8	0	1	18.06537	15.13663	20.99411 ^G
34		kraemer	12	0	1	18.06537	15.13663	20.99411 ^{ឆ្ន}
35		kraemer	8	0	1	18.06537	15.13663	20.99411 ਰੁੱ
36 37		kraemer	18	0	1	18.06537	15.13663	20.99411 🖁
38		kraemer	23	0	1	18.06537	15.13663	20.99411 <mark>g</mark>
39		kraemer	19	0	1	18.06537	15.13663	20.99411 8
40								ругі
41 42								ight.
42 43			F		مرابع المنفقا مرامي	6		alia a a viatural
44			F	or peer review of	only - nttp://bm	Jopen.pmJ.com/	site/about/guid	eimes.xntml
45								

			В	MJ Open		6/bmjop
						0en-202
kraemer	3	0	1	18.06537	15.13663	20.99411
kraemer	17	0	1	18.06537	15.13663	20.99411 ^წ
kraemer	26	0	1	18.06537	15.13663	20.99411 ^S
kraemer	19	0	1	18.06537	15.13663	20.99411 2
kraemer	16	0	1	18.06537	15.13663	20.99411 ^{gr}
kraemer	35	0	1	18.06537	15.13663	20.99411 🕺
kraemer	14	0	1	18.06537	15.13663	20.99411 ⁸ .
kraemer	15	0	1	18.06537	15.13663	20.99411 🎖
kraemer	29	0	1	18.06537	15.13663	20.99411 ର
kraemer	30	0	1	18.06537	15.13663	20.99411 🖉
kraemer	24	0	1	18.06537	15.13663	20.99411 式
kraemer	32	0	1	18.06537	15.13663	20.99411 ³
kraemer	15	0	1	18.06537	15.13663	20.99411 👼
kraemer	24	0	1	18.06537	15.13663	20.99411
kraemer	9	0	1	18.06537	15.13663	20.99411 🗧
kraemer	18	0	1	18.06537	15.13663	20.99411 🚆
kraemer	16	0	1	18.06537	15.13663	20.99411 💐
kraemer	33	0	1	18.06537	15.13663	20.99411 🎽
kraemer	18	0	1	18.06537	15.13663	20.99411 g
kraemer	21	0	1	18.06537	15.13663	20.99411 출
kraemer	19	0	1	18.06537	15.13663	20.99411 🖯
kraemer	7	0	1	18.06537	15.13663	20.99411 👌
kraemer	18	0	1	18.06537	15.13663	20.99411 🛱
kraemer	30	0	1	18.06537	15.13663	20.99411 هَو
kraemer	27	0	1	18.06537	15.13663	20.99411 ឆ្នី
kraemer	20	0	1	18.06537	15.13663	20.99411 ਤ
kraemer	33	0	1	18.06537	15.13663	20.99411 ថ្ តី
kraemer	15	0	1	18.06537	15.13663	20.99411 🖻
kraemer	5	0	1	18.06537	15.13663	20.99411 🎽
kraemer	16	0	1	18.06537	15.13663	20.99411 ^{öp} yright

3 4

Page 55 of 62				BI	NJ Open		6/bmjoper	
1 2							1-2020-0))))
3	kraemer	14	0	1	18.06537	15.13663	20.99411 🖉	, , ,
4 5	kraemer	21	0	1	18.06537	15.13663	20.99411	;
6	kraemer	15	0	1	18.06537	15.13663	20.99411 ^S	1
7	kraemer	26	0	1	18.06537	15.13663	20.99411 2	•
8	kraemer	17	0	1	18.06537	15.13663	20.99411 ត្តិ	
9 10	kraemer	17	0	1	18.06537	15.13663	20.99411	2
11	kraemer	16	0	1	18.06537	15.13663	20.99411)
12	kraemer	16	0	1	18.06537	15.13663	20.99411 💡	J
13	kraemer	26	0	1	18.06537	15.13663	20.99411	-
14	kraemer	19	0	1	18.06537	15.13663	20.99411 🚆	-
16	kraemer	14	0	1	18.06537	15.13663	20.99411	•
17	kraemer	8	0	1	18.06537	15.13663	20.99411 ³	-
18	kraemer	34	0	1	18.06537	15.13663	20.99411 🚦	:
20	linton	10	1	0	18.06537	15.13663	20.99411	:
21	linton	21	1	0	18.06537	15.13663	20.99411 🗧	•
22	linton	8	1	0	18.06537	15.13663	20.99411	-
23	linton	11	1	0	18.06537	15.13663	20.99411 🚆	
24 25	linton	11	1	0	18.06537	15.13663	20.99411	
26	linton	30	1	0	18.06537	15.13663	20.99411 9	•
27	linton	32	1	0	18.06537	15.13663	20.99411 출	•
28	linton	10	1	0	18.06537	15.13663	20.99411	: 1
30	linton	19	1	0	18.06537	15.13663	20.99411	2
31	linton	19	1	0	18.06537	15.13663	20.99411	:
32	linton	14	1	0	18.06537	15.13663	يّ 20.99411	
33	linton	8	1	0	18.06537	15.13663	20.99411 ឆ្នំ	_
35	linton	12	1	0	18.06537	15.13663	20.99411 <u>y</u>	J
36	linton	12	1	0	18.06537	15.13663	20.99411 g	•
37	linton	20	1	0	18.06537	15.13663	20.99411	_
38	linton	12	1	0	18.06537	15.13663	20.99411 🎽	•
39 40	linton	7	1	0	18.06537	15.13663	20.99411 පි	
41							Vrigt	-
42							t.	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			E	BMJ Open		6/bmjop
						oen-202
linton	11	1	0	18.06537	15.13663	20.99411 ²⁰
linton	16	1	0	18.06537	15.13663	20.99411 ^წ
linton	6	1	0	18.06537	15.13663	20.99411 ^S
linton	6	1	0	18.06537	15.13663	20.99411 2
linton	17	1	0	18.06537	15.13663	20.99411 ^{Gr}
linton	15	1	0	18.06537	15.13663	20.99411 🕺
linton	24	1	0	18.06537	15.13663	20.99411 ⁸ .
linton	41	1	0	18.06537	15.13663	20.99411 🎖
linton	10	1	0	18.06537	15.13663	20.99411 ର
linton	11	1	0	18.06537	15.13663	20.99411 🖉
linton	13	1	0	18.06537	15.13663	20.99411 式
linton	13	1	0	18.06537	15.13663	20.99411 ³
linton	16	1	0	18.06537	15.13663	20.99411 👼
linton	13	1	0	18.06537	15.13663	20.99411 🛓
linton	14	1	0	18.06537	15.13663	20.99411 🗧
linton	18	1	0	18.06537	15.13663	20.99411 🎽
linton	12	1	0	18.06537	15.13663	20.99411 💐
tindale	19	0	1	18.06537	15.13663	20.99411 🎽
tindale	25	0	1	18.06537	15.13663	20.99411 g
tindale	25	0	1	18.06537	15.13663	20.99411 출
tindale	20	0	1	18.06537	15.13663	20.99411 🖯
tindale	20	0	1	18.06537	15.13663	20.99411 👌
tindale	13	0	1	18.06537	15.13663	20.99411 🛱
tindale	28	0	1	18.06537	15.13663	20.99411 هَو
tindale	25	0	1	18.06537	15.13663	20.99411 ឆ្នី
tindale	24	0	1	18.06537	15.13663	20.99411 _P
tindale	14	0	1	18.06537	15.13663	20.99411 ថ្ តី
tindale	17	0	1	18.06537	15.13663	20.99411 🖻
tindale	15	0	1	18.06537	15.13663	20.99411 홋
tindale	18	0	1	18.06537	15.13663	20.99411 ਉੱ
						rright.

3 4

Page 57 of 62				В	MJ Open			6/bmjoper
1 2								1-2020-0
3	tindale	15	0	1	18.06537	15.13663	20.99411	398
4 5	tindale	16	0	1	18.06537	15.13663	20.99411	56 0
6	tindale	16	0	1	18.06537	15.13663	20.99411	о л ъ
7	tindale	20	0	1	18.06537	15.13663	20.99411	Au
8	tindale	17	0	1	18.06537	15.13663	20.99411	snb
9 10	tindale	12	0	1	18.06537	15.13663	20.99411	120
11	tindale	24	0	1	18.06537	15.13663	20.99411	20.
12	tindale	24	0	1	18.06537	15.13663	20.99411	Dow
13	tindale	26	0	1	18.06537	15.13663	20.99411	/nlo
14	tindale	16	0	1	18.06537	15.13663	20.99411	ade
16	tindale	20	0	1	18.06537	15.13663	20.99411	d fro
17	tindale	9	0	1	18.06537	15.13663	20.99411	m
18	tindale	15	0		18.06537	15.13663	20.99411	Ttp:
19 20	tindale	14	0	1	18.06537	15.13663	20.99411	//bn
21	tindale	18	0	1	18.06537	15.13663	20.99411	jop
22	tindale	30	0	1	18.06537	15.13663	20.99411	en.t
23	tindale	19	0	1	18.06537	15.13663	20.99411	, <u>,</u>
24 25	tindale	17	0	1	18.06537	15.13663	20.99411	COT
26	tindale	16	0	1	18.06537	15.13663	20.99411	v or
27	tindale	17	0	1	18.06537	15.13663	20.99411	۱Ap
28	tindale	20	0	1	18.06537	15.13663	20.99411	ril 7
29 30	tindale	23	0	1	18.06537	15.13663	20.99411	, 20
31	tindale	19	0	1	18.06537	15.13663	20.99411	24 t
32	tindale	12	0	1	18.06537	15.13663	20.99411	g Ac
33	tindale	19	0	1	18.06537	15.13663	20.99411	ues
34	tindale	17	0	1	18.06537	15.13663	20.99411	. г
36	tindale	17	0	1	18.06537	15.13663	20.99411	ote
37	tindale	14	0	1	18.06537	15.13663	20.99411	cted
38	tindale	16	0	1	18.06537	15.13663	20.99411	by
39	tindale	30	0	-	18.06537	15.13663	20.99411	сор
40 41				-	_0.00007			yrig
42								ht.

tindale	33	0	1	18.06537	15.13663	20.99411 员
tindale	19	0	1	18.06537	15.13663	20.99411
indale	29	0	1	18.06537	15.13663	20.99411 ັ _ຫ
indale	22	0	1	18.06537	15.13663	20.99411 کے
indale	10	0	1	18.06537	15.13663	20.99411 ថ្លៃ
indale	20	0	1	18.06537	15.13663	20.99411 👷
indale	11	0	1	18.06537	15.13663	20.99411 ^Ö
indale	15	0	1	18.06537	15.13663	20.99411 g
indale	18	0	1	18.06537	15.13663	20.99411 ^금
indale	11	0	1	18.06537	15.13663	20.99411 👼
						http://bm
						http://bmjopen.bmj.com/ on /
						http://bmjopen.bmj.com/ on April 7, 2024 by guest

 BMJ Open

6/bmjopen-2020-039856 on 5 August 2020. Downloaded from http://bmjopen.bmj.com/ on April 7, 2024 by guest. Protected by copyright

1		
2 3	30	Supplementary material 4: Stata code
4 5	31	// 1st April 2020
6 7	32 33 24	/* Code for:
8 9	34 35 26	Byrne, AW, McEvoy, D, et al. 2020
10	30 37 38	Inferred duration of infectious period of SARS-CoV-2: rapid review and analysis of
12	39	available evidence for asymptomatic and symptomatic covin-is cases
13 14	40	*/
15	42 43	* Figure 2
16 17	44 45	gen davies1_gamma = rgamma(5, 1.4)
18 10	46 47	gen davies2_gamma = rgamma(4, 1.25)
20	48 49	gen ma normal = rnormal(7.2, 4.96)
21 22	50 51	
23	52	input hu_data
24 25	55 54	12
26	55 56	1
27 28	57 58	1
29 30	59 60	11
31	61 62	3
32 33	63 64	16
34	65 66	
35 36	67 68	
37 39	69 70	
39	70 71 72	
40 41	72 73	
42	74 75	8
43 44	76 77	8
45 46	78 79	11
40 47	80 81	14
48 49	82 83	14
50	84 87	12
51 52	85 86	13
53	87 88	1
54 55	89 90	17
56 57	91 92	3
58	93 94	11
59 60	95 96	5
	20	

```
2
3
      97
      98
4
            6
      99
5
     100
            21
6
     101
7
     102
             end
8
     103
9
     104
     105
10
     106
            // Fig 2 visualise
11
     107
12
     108
            twoway (histogram hu_data, fcolor(gs14) lcolor(black)) (histogram davies1_gamma,
13
     109
            bin(180) fcolor(ltbluishgray%86) lcolor(none) lwidth(none)) (kdensity
14
     110
            davies1 gamma, lcolor(gs11) lwidth(thick)) (kdensity davies2 gamma, lcolor(gs11)
     111
15
            lwidth(thick)) (histogram davies2_gamma, bin(120) fcolor(orange_red%20)
     112
            lcolor(none) lwidth(none)) (histogram ma_normal, bin(100) fcolor(lime%20)
16
     113
            lwidth(none)) (kdensity ma normal, lcolor(gs11) lwidth(thick)) if ma n>=0,
17
     114
            yscale(line) xtitle(Days since infected) xline(6 6.5 11 3.5, lpattern(dash)
18
     115
            lcolor(black) noextend) xlabel(0(5)30) legend(off) scheme(s2color) xsize(20)
19
     116
            ysize(16) graphregion(fcolor(white)) plotregion(fcolor(white))
20
     117
     118
21
     119
22
     120
            * Figure 3
23
     121
24
     122
            gen rothet3 normal = rnormal(2, 0.6)
25
     123
26
     124
            gen huangt3_normal = rnormal(3.75, 0.332)
     125
27
     126
            gen het3 normal = rnormal(2.3, 0.49)
28
     127
29
     128
            gen weit3 normal = rnormal(2.5, 0.89)
30
     129
31
     130
            gen peakt3 normal = rnormal(0.8, 0.5)
32
     131
     132
            gen daviesAt3 normal = rgamma(5, 0.48)
33
     133
34
     134
            gen daviesBt3 normal = rgamma(4, 0.375)
35
     135
36
            twoway (histogram rothe, bin(120) fcolor(orange_red%20) lcolor(none) lwidth(none))
     136
37
     137
            (kdensity rothe, lcolor(gs11) lwidth(thick)) (histogram he, bin(100)
     138
38
            fcolor(lime%20) lwidth(none)) (kdensity he, lcolor(gs11) lwidth(thick))(histogram
            wei, bin(100) fcolor(orange%20) lwidth(none)) (kdensity wei, lcolor(gs11)
     139
39
     140
            lwidth(thick))(histogram peak, bin(100) fcolor(purple%20) lwidth(none)) (kdensity
40
     141
            peak, lcolor(gs11) lwidth(thick))(histogram daviesA, bin(100) fcolor(brown%20)
41
     142
            lwidth(none)) (kdensity daviesA, lcolor(gs11) lwidth(thick))(histogram daviesB,
42
     143
            bin(100) fcolor(yellow%20) lwidth(none)) (kdensity daviesB, lcolor(gs11)
43
     144
            lwidth(thick)) if peak>=0 & wei>=0 & rothe>=0, yscale(line) xtitle(Pre-symptomatic
            infectious period) xline(0.5 1 1.2 2.6 2.9 3.75 8.2, lpattern(dash) lcolor(black)
     145
44
     146
            noextend) xlabel(0(1)10) legend(off) scheme(s2color) xsize(20) ysize(16)
45
     147
            graphregion(fcolor(white)) plotregion(fcolor(white)) ytitle(Density)
46
     148
47
     149
            * Figure 4
48
     150
     151
49
            // meta analysis & meta regression
     152
50
     153
            clear
51
     154
52
     155
53
     156
54
     157
            // open data =
     158
55
     159
            * meta analysis dataset.xls
56
     160
57
     161
58
     162
59
     163
            // Fit random effects meta-analytical model, and specify forest plot
60
     164
```

2		
3	165	metaan mean se, dl forest label(paper)
4	166	
5	167	// forest plot is figure 4.
6	169	// meta regression
7	170	
8	171	// binary child (y/n) variable
9	172	
10	173	gen kid_cat = 1 if child==1
11	174	replace kid = 2 if adult==1 & childl=1
12	176	
13	177	tab kid_cat
14	178	
15	1/9	* binary children inclusion in sample [REML]
10	181	xi: metareg mean i kid if se>0. wsse(se)
17	182	
10	183	// monte carlo model of P-value
20	184	
20	105	x1: metareg mean 1.kid if se>0, wsse(se) permute(1000, joint(1.kid))
21	187	
22	188	
24	189	// binary severe (y/n) variable
25	190 191	anada sayar gan (say num) // A yay astagarias
26	192	encode sever, gen(sev_num) // 4 way categorical
27	193	gen sev bin = 0 if sev n<3
28	194	
29	195	replace sev_bin = 1 if sev_n==3 sev_n==4
30	190 197	
31	198	
32	199	xi: metareg mean i.sev_bin if se>0, wsse(se)
33	200	// mante scale model of D value
34	201	// monte carlo model of P-value
35	203	xi: metareg mean i.sev bin if se>0, wsse(se) permute(1000, joint(i.sev bin))
36	204	
3/	205	
38	206	* Figure 5
39	208	
40 41	209	
41 12	210	
42 43	211 212	// Import, open time_to_discharge_death.csv
44	213	
45	214	// numeric indicator for study category
46	215	
47	210	encode study, gen(study_)
48	218	
49	219	
50	220	<pre>// random effects model for time from onset to removal (discharge or death)</pre>
51	222	// 3 levels of study as RE
52	223	,, o recercite or octaal as its
53	224	<pre>xi: xtreg overall_time, i(study_)</pre>
54 55	225 226	// summarise nest-estimation
55 56	227	// Summarise bosc-escimation
57	228	estat summarize
58	229	
59	230	// Breuson and Fagan Lagrangian multiplier test for random effects
60	232	xttest0

234 // Figure 5: histogram plot with kernel density 237 twoway(hist overall_time if study_== 3 , bin(10) fcolor(green%20))(hist overall_time if study_== 1, bin(10) fcolor(red%20))(hist overall_time if study_== 2, bin(10) fcolor(purple%20))(kdensity overall time disc death , 1color(gs11) lwidth(mthick)), scheme(s2gcolor) legend(off) xsize(20) ysize(16) graphregion(fcolor(white)) plotregion(fcolor(white)) xline(15.13663 18.06537 20.99411, lpattern(dash) lcolor(black) noextend) // GLM reporting the variation in mean duration across studies xi: reg overall_time i.study_ // GOF test estat hettest // residuals plot rvfplot // prediction predict pred study // visualise twoway(scatter pred study study) // GLM reporting the variation in mean duration across removal type [death or discharge] xi: reg overall time i.discharge // GOF test estat hettest // residuals plot rvfplot // prediction predict pred study // visualise twoway(scatter pred study study)

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED
TITLE			
Title	1	Identify the report as a scoping review.	1
ABSTRACT			
Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
INTRODUCTION		· · · , · · · · ·	
Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	3
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	3
METHODS			
Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	4-5
Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	5
Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	4-5
Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	4-5
Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	4-5
Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	4-5
Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	5-7
Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	5-7
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	5-7

St. Michael's

SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	8, Tables 1-3
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	Tables 1-3
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	Tables 1-3
Results of individual sources of of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	8-13
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	8-13; figures 1-5
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	14-17
Limitations	20	Discuss the limitations of the scoping review process.	17-18
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	18
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	18

extension for Scoping Reviews.

* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

[†] A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).

[‡] The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

St. Michael's Inspired Care. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml Inspiring Science.

Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-039856.R2
Article Type:	Original research
Date Submitted by the Author:	06-Jul-2020
Complete List of Authors:	Byrne, Andrew; Government of Ireland Department of Agriculture Food and the Marine, One-Health Scientific Support Unit McEvoy, David; University College Dublin, School of Public Health, Physiotherapy and Sports Science Collins, Aine; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis; Government of Ireland Department of Agriculture Food and the Marine Hunt, Kevin; University College Dublin, Centre for Food Safety Casey, Miriam; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis Barber, Ann; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis Butler, Francis; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis Butler, Francis; University College Dublin, Centre for Food Safety Griffin, John; Government of Ireland Department of Agriculture Food and the Marine Lane, Elizabeth; Government of Ireland Department of Agriculture Food and the Marine; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis McAloon, Conor; UCD School of Agriculture Food Science and Veterinary Medicine, School of Veterinary Medicine O'Brien, Kirsty; Health Information and Quality Authority Wall, Patrick; University College Dublin, Centre for Veterinary Epidemiology and Risk Analysis
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Epidemiology < INFECTIOUS DISEASES, VIROLOGY, INFECTIOUS DISEASES, PUBLIC HEALTH

1	
2	
3	
4	SCHULARUNE
5	Manuscripts
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
20 27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
>> F6	
50 57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

RELEX ONL

1 2		
- 3 4	1	Inferred duration of infectious period of SARS-CoV-2: rapid scoping review
5 6	2	and analysis of available evidence for asymptomatic and symptomatic
7 8 9	3	COVID-19 cases
10 11	4	Andrew W. Byrne ^{1^} , David McEvoy ² , Áine B. Collins ^{3, 6} , Kevin Hunt ⁴ , Miriam Casey ³ , Ann Barber ³ ,
12	5	Francis Butler ⁴ , John Griffin ⁶ , Elizabeth A. Lane ^{3,6} , Conor McAloon ⁵ , Kirsty O'Brien ⁷ , Patrick Wall ² ,
13 14 15	6	Kieran A. Walsh ⁷ , Simon J. More ³
16	7	¹ One-Health Scientific Support Unit, DAFM, Government of Ireland, Kildare Street, Dublin 2, Ireland.
17	8	https://orcid.org/0000-0003-0296-4586
19 20	9	² School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield,
21 22	10	Dublin 4, Ireland.
23 24	11	³ Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University
25 26	12	College Dublin, Belfield, Dublin 4, Ireland.
27 28 29	13	⁴ School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
30 31	14	⁵ School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
32	15	⁶ Department of Agriculture, Food and the Marine, Government of Ireland, Kildare Street, Dublin 2,
33 34 35	16	Ireland.
36 37	17	⁷ Health Information and Quality Authority (HIQA), Unit 1301, City Gate, Cork, Ireland.
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	18	* Corresponding author: ecologicalepidemiology@gmail.com
55 56 57 58 59 60		

Abstract

Objectives: Our objective was to review the literature on the inferred duration of the infectious period of COVID-19, caused by SARS-COV-2 virus, and provide an overview of the variation depending on the methodological approach.

Design: Rapid scoping review. Literature review with fixed search terms, up to 1st April 2020. Central tendency and variation of the parameter estimates for infectious period in (a) asymptomatic (b) symptomatic cases from (i) virological studies (repeated testing), (ii) tracing studies (iii) modelling studies were gathered. Narrative review of viral dynamics.

Information sources: Search strategies developed and the following searched: PubMed, Google Scholar, MedRxiv, BioRxiv. Additionally, the Health Information Quality Authority (Ireland) viral load synthesis was utilised, which screened literature from PubMed, Embase, ScienceDirect, NHS evidence, Cochrane, medRxiv and bioRxiv, HRB open databases.

Results: There was substantial variation in the estimates, and how infectious period was inferred. One study provided approximate median infectious period for asymptomatic cases of 6.5-9.5 days. Median pre-symptomatic infectious period across studies varied over <1-4 days. Estimated mean time from symptom onset to two negative RT-PCR tests was 13.4 days (95%CI: 10.9-15.8), but was shorter when studies included children or less severe cases. Estimated mean duration from symptom onset to hospital discharge or death (potential maximal infectious period) was 18.1 days (95%CI: 15.1–21.0); time to discharge was on average 4 days shorter than time-to-death. Viral dynamic data and model infectious parameters were often shorter than repeated diagnostic data. **Conclusions:** There are limitations of inferring infectiousness from repeated diagnosis, viral loads,

and viral replication data alone, and also potential patient recall bias relevant to estimating exposure and symptom onset times. Despite this, available data provides a preliminary evidence base to inform models of central tendency for key parameters, and variation for exploring parameter space and sensitivity analysis.

Strengths and limitations of this study

A comprehensive overview of the literature pertaining to inferred infectious duration of COVID-19, including indirect measures from virological, contact tracing, and modelling studies to 1st April 2020.

Both narrative review and quantitative analysis presented •

1 2		
3	50 •	Small number of comparable parameter estimates for meta-analysis is a limitation
4 5	51 •	Much of the current research material on COVID-19 is from preprint papers, and therefore
6 7	52	have not gone through formal peer review
8		
9 10		
11 12		
13 14		
15		
16 17		
18 19		
20 21		
22		
23 24		
25 26		
27 28		
29		
30 31		
32 33		
34 35		
36		
38		
39 40		
41 42		
43 44		
45		
46 47		
48 49		
50 51		
52 53		
54		
55 56		
57 58		
59 60		

53 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus, emerged in China in late 2019.[1,2] The virus causes COVID-19, a disease characterized by variable, mainly respiratory, symptoms across cohorts, from asymptomatic cases through to mild (for example, dry cough, fever) and severe cases (for example, pneumonia).[3,4] The severity of symptoms, and their clinical outcome, have been reported to vary by age-class and whether patients have underlying comorbidities. The case-fatality rate increases with age, and are highest for those above 70 years. [5,6] There are several cases of asymptomatic test-positive patients reported in the emerging literature (e.g. [4,7,8]). Furthermore, asymptomatic (and pre-symptomatic) cases have been shown to be infectious, and secondary cases have been reported.[9,10] However, the duration of this infectious period is difficult to measure accurately, and the time course of the natural history of infection generally must be inferred indirectly, via contact tracing of cases, serial repeated diagnostic virological studies, and/or through modelling approaches. Symptomatic cases can experience an infectious pre-symptomatic period before the onset of symptoms, therefore understanding the whole infectious period for this cohort requires estimating the duration of both periods. It is essential to rapidly gain insight into this key variable impacting our understanding of COVID-19 epidemiology. Anderson et al. [11] point out one of the "key unknowns" is the infectious period for COVID-19, which they suggest may be 10 days but subject to great uncertainty.

Here we gathered data from published research from peer-reviewed and preprints from 1st
 December to 1st April 2020, to characterize the variation in the infectious duration inferred from the
 three lines of evidence. We also provide a narrative review of the viral dynamic literature. Our focus
 was on duration, relative infectiousness has been dealt with elsewhere [12,13]

The aim of this review was to provide an overview and critical appraisal of published and preprint
 articles and reports that assess or quantify the inferred duration of the infectious period in order to
 best parameterise COVID-19 epidemiological transmission models.

1 2		
3 4	78	Materials and Methods
5	79	Conceptual model of population infection dynamics
0 7	80	Infectious period was contextualised in relation to a working conceptual model of COVID-19 disease
8	81	dynamics (Figure S1, supplementary material 1). From this conceptual model, three parameters
9 10	82	were identified as important in context of this study:
11	83	T2, defined as: Duration of the total infectious period for asymptomatic cases, post-latent to
12 13	84	recovery ['recover' in this context relates to clearing of infection]
14	85	T3, defined as: Duration of pre-symptomatic infectious period for those infected individuals
15 16	86	who subsequently develop symptoms (that is, post-latent to onset of symptoms)
17 18	87	T5, defined as: Duration from onset of symptoms to recovery* or death.
19	88	* recovery was inferred as either the first of two clear RT-PCR tests, or hospital discharge after
20 21	89	admission from COVID-19 related symptoms.
22	90	"Asymptomatic" case definition was interpreted pragmatically following Davies et al. [14.15], and
23 24	91	may include very mild symptoms that may occur but are unnoticed.
25	92	T2 T3 T5 represent readily measurable parameters, but may be upper limits of infectious period, as
26 27	93	patients may be non-infectious for a period before recovery or death. We also review evidence
28	94	where infectiousness is inferred from viral shedding and contract tracing [transmission], see below.
29 30	95	Literature search
31 32	96	A survey of the literature between 1 st December 2019 and 1 st April 2020 for all countries was
33	07	implemented using the following search strategy. Bublications on the electronic databases BubMed
34 35	97	implemented using the following search strategy. Publications on the electronic databases Publiced,
36	98	Google Scholar, MedRxiv and BioRxiv were searched with the following keywords: "Novel
37 38	99	coronavirus" OR "SARS-CoV-2" OR "2019-nCoV" OR "COVID-19" AND "infectious". Additionally,
39	100	national and international government reports were monitored. No restrictions on language or
40 41	101	publication status were imposed so long as an English abstract was available. Articles were evaluated
42 43	102	for data relating to the aim of this review; all relevant publications were considered for possible
44 45	103	inclusion. Bibliographies within these publications were also searched for additional resources.
46 47	104	Manual searches of the literature was undertaken using daily updated COVID19 collections
48	105	from the National Centre for Biotechnology Information (NCBI) and MedRxiv servers
49 50	106	(<u>https://connect.medrxiv.org/relate/content/181</u>), respectively, searching specifically for
51 52	107	papers relating to "infectious period" or "infectious duration" from both empirical and
53	108	modelling studies.
54 55	109	Finally, we utilised the complementary work undertaken by the Health Information and Quality
56 57	110	Authority (HIQA) of Ireland, specifically the evidence summaries relating to asymptomatic
58	111	transmission and viral load [16,17]. The protocol for the evidence synthesis is published on the HIQA
59 60	112	website [18]. Briefly, the evidence synthesis process included searching databases from 30 th

December 2019 to 27th March 2020 (PubMed, Embase, ScienceDirect, NHS evidence, Cochrane,
medRxiv and bioRxiv, HRB open), screening, data extraction, critical appraisal and summarizing the
evidence.

Our aim was to have as great a breadth for an evidential base as possible, to clarify what evidence was available to inform on the infectious period of COVID19, and to identify key characteristics of the data sources and their interpretation. Therefore, our approach is a scoping review (following [19]). However, due to the emergent nature of COVID-19, this work is considered a rapid review.[20] This paper follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses— Extension for Scoping Reviews (PRISMA-ScR) checklist. In accordance with the PRISMA-ScR checklist, the electronic search strategy can be found in the supplementary material (Supplementary material 2).

Inclusion criteria were for papers that provided data to inform duration of infectious period based on: time from symptoms to recovery; time from symptoms to death; time from symptoms to diagnostic test clearance [>two clear tests, defined as at least two consecutive negative reverse transcriptase polymerase chain reaction (RT-PCR) tests conducted 24 hours apart]; pre-symptomatic infectious period; time from first diagnostic test to diagnostic test clearance [>two clear tests] for pre-symptomatic/asymptomatic cases. Inclusion criteria for viral dynamics, were papers which reported viral load via cycle threshold (Ct) values from RT-PCR testing over repeated sampling of infected patients, and studies that additional reported viral isolation.

For quality control, studies were (i) selected and screened initially by three members of the team from search terms outlined above (ÁBC, KH, FB), with parameters identified and recorded. (ii) This was reviewed and supplemented by manual search by a different two team members (AWB, DM), again with parameters identified and recorded. (iii) Finally, the review was then internally reviewed by an additional two members of the team (CMc, MC), and cross-referenced with other parameter synthesis documents being worked on by the group (all authors).

48 138 Parameter comparison

50 139 *Parameters of interest*

1. A-priori it was decided to harvest parameter estimates for (i) asymptomatic, and (ii) symptomatic cases. As the period of infectiousness can only be estimated indirectly, parameter estimates from the literature was gathered from three different methodological approaches: Virological studies tracking patients overtime undertaking serial testing, where infectious period was inferred from diagnostic testing history and/or by virus isolation.

Page 9 of 63

BMJ Open

1 2		
3	145	2. Contact tracing studies where infectiousness is inferred by infector-infectee histories and/or
4 5	146	clusters of infection.
6 7	147	3. Model parameters entered into mathematical models [priors] representing explicitly
8	148	infectious periods, or model parameters estimated from mathematical models [posterior
9 10	149	estimates] estimating explicitly infectious periods
11 12	450	
13	150	
14 15 16	151	Visual and quantitative comparisons
17	152	To compare parameters visually, simulated distributions were estimated from the central tendencies
18 19	153	and variation metrics described in the primary literature. To simulate data, 10,000 random variates
20 21	154	were drawn from random number functions in Stata (ME, version 15.1; StataCorp. 2017. Stata
22	155	Statistical Software: Release 15. College Station, TX: StataCorp LLC) [rnormal, rgamma]. Where
23 24 25 26 27 28 29 30 31 32 33	156	possible, the distribution reported within the primary literature was used to represent the
	157	distribution (e.g. Gaussian, Gamma). Where distributional data could not be inferred, point
	158	estimates were presented.
	159	There were adequate comparable data gathered on the duration of T5 (duration from onset of
	160	symptoms to death or recovery) from virological studies to employ a meta-analytic model. Many of
	161	the studies report different central tendency estimates, including mean and median. Methods of
34 35	162	reporting variation across this central tendency included standard deviation, range, inter-quartile
35 36 37 38	163	range. To facilitate meta-analysis, reported estimates from all studies were converted to the mean
	164	and standard deviations based on the formulae given in Wan et al. [21].
39 40	165	To obtain the standard deviations from 95%CI, the method outlined in the Cochrane handbook [22]
41 42	166	was used:
43 44	467	
44 45	167	SD: Vn(Upper limit of CI – Lower limit of CI)/3.92
46 47	168	
48 49	169	Standard Error (SE) was calculated from Standard Deviation (SD) and sample size (n), using:
50 51	170	SE = SD/SQRT(n)
52 53	171	Comparisons were made using the METAAN package in Stata 15, using the random-effects
54 55	172	(DerSimonian-Laird) model.[23] This model assumes heterogeneity between the studies; that is, it
56 57	173	assumes that the true effect can be different for each study. The model assumes that the individual-
58	174	study true effects are distributed with a variance τ^2 around an overall true effect, but the model
59 60	175	makes no assumptions about the form of the distribution of either the within-study or the between-

Page 10 of 63

BMJ Open

studies effects. Weightings were derived from the standard error [precision] around the estimate. Comparisons were presented as forest plots. Heterogeneity between studies was tested using Cochrane's Q; the magnitude of the heterogeneity was categorised using *I*² as high (>75%), moderate (50-75%), or low (<50%).[24]

Variation in duration across T5 virological studies was compared using a random effects meta-regression model, using the METAREG command in Stata 15.1. The hypothesis that heterogeneity may be related to the inclusion of children or depending on symptom severity within the sample, was tested in separate univariate models. Severity was dichotomised (0/1) into studies that included patients described as having 'mild' or 'mild-moderate' symptoms, versus studies that included patients with 'moderate-severe' or 'severe' symptoms. Similarly, studies were categorised into having some samples from "children" (as reported in the paper), or wholly adult samples. These variables were then fitted as a dichotomous dummy predictor [independent]. The parameter estimates from the regression model was solved using restricted maximum likelihood (REML); additionally, p-values were estimated using a Monte Carlo model with 1000 permutation test.[25] Raw patient-level data were available from three studies in relation to time from onset to hospital

discharge or death (potentially inferring maximal T5 duration). To estimate the predicted mean and 95%CI duration across these studies, data were analysed using a Gaussian random effects model (using XTREG command, Stata 15), with study categories fitted as the RE. A linear regression model with 'study' fitted as a categorical dummy variable was used to estimate the difference between duration across study datasets. Code and data are provided in Supplementary Material 3 & 4.

3839 196 Viral dynamics

A narrative comparison of reported viral dynamics from studies that undertook serial viral load
 A narrative comparison of reported viral dynamics from studies that undertook serial viral load
 estimates from patients over their period of observation was undertaken. Trends in the literature,
 strength and weaknesses were identified, and a conceptual model illustrated.

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	200	Results
	201	Parameter comparison
	202	Overall, 65 parameter estimates were harvested from 48 papers (Tables 1, 2, 3).
	203	Infectious period for asymptomatic cases (T2)
	204	The overall distributions and point estimates from studies for T2 are presented in Figure 1 and Table
	205	1.
	206	Two virological studies reported on infectious period based on serial diagnostic testing, for
	207	asymptomatic cases, were found to have informative data. One of these studies reported on only
20	208	one asymptomatic case, with exposure to negative tests being 11 days (Table 1). This duration
21 22	209	should be considered an over-estimate, given that a latent period is not taken into consideration. Hu
23 24	210	et al. [7] tracked infections of close contacts to infected persons and considered patients
24 25	211	asymptomatic at time of diagnosis. Infectious period was defined as time from diagnosis to the first
26 27 28	212	of two clear tests, providing a median duration of 9.5 days (n=24) range: 1 – 21; 3.5-13.0 IQR.
29 30 31 32 33 34 35 36 37 38	213	Importantly, Hu et al. [7] found that the infectious period was different between those who
	214	subsequently exhibited symptoms (i.e. pre-symptomatic) and those who did not: The median
	215	duration for asymptomatic infectious was 6.0 days (IQR: 2.0 - 12.0; N=19). This was reduced to 4.0
	216	days (2.0 - 15.0) for cases that were asymptomatic without abnormal computed tomography (CT)
	217	scans (n=7).
	218	Two tracing studies provide informative data (Table 1; [7,8]). Infectious period was inferred
39 40	219	indirectly from data provided in Ma et al. [8], whereby infectious period was estimated as the
41 42	220	difference between the upper (maximal) latent period estimate minus the serial interval. Ma et al.
43	221	[8] reports on 49 asymptomatic cases and inferred serial interval from infector-infectee pairs. Serial
44 45	222	interval was calculated by assuming "onset" was at first diagnosis. Hu et al. [7] reported on a case-
46 47	223	study cluster of infection within a house where the primary case was asymptomatic. Secondary
48	224	infections occurred 4-9 days after index case exposure, the index patient tested positive until day 29
49 50 51	225	post exposure.
52 53	226	Modelling studies that have attempted to fit differing parameters depending on the severity of
54 55	227	symptoms have used differing nomenclature, for example asymptomatic, "mild" or subclinical cases
55 56 57 58	228	(Table 1).[14,15,26,27] Two papers by Davies and colleagues [14,15]model this parameter as a
	229	gamma distribution with a mean periods of 5-7 days (Fig. 2); importantly, these papers assume
59 60	230	infectious period is the same for asymptomatic and symptomatic cases.

2
3
1
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
22
22
34
35
36
37
38
30
40
40
41
42
43
44
45
46
.0 47
-1/ 40
48
49
50
51
52
53
54
55
55
56
57
58
59

1

231 <u>Pre-symptomatic, infectious period (T3)</u>

Pan et al. [3] and Hoehl et al. [28] describe the cases of two individuals tracked and serially tested by
real-time reverse transcriptase polymerase chain reaction (RT-PCR) after being exposed to a patient
with confirmed infection. In the latter study, the virus was isolated from samples, indicating
transmission potential.

Four studies from China, Germany and Singapore provide informative data through tracing infections from cluster of infections, and through infector-infectee pairs (Table 2).[4,9,29,30] These papers included the study by Rothe et al. [9], which clarified that an asymptomatic patient visiting Germany from China may have actually experienced very mild symptoms around the time of transmission occurred (see discussion).

Five modelling papers incorporated pre-symptomatic infectious period reported as prior distributions or estimated as a model output. Two papers describe the prior distribution using a gamma distribution.[14,15] Tindale et al. [31] provide mean point estimates under four different scenarios (two populations, early and late epidemic period). Peak et al. [32] derives estimates of the pre-symptomatic infectious duration from a model of serial interval, and report scenarios where there are pre-symptomatic infectious periods.

The approximated distributions are simulated in Figure 2, which demonstrates the between-study heterogeneity in this parameter. The point estimates primarily cluster around the central tendencies of the distributions, except for Tindale et al. [31], for a model reporting for late occurring cases in Tianjin, China (8.2 days).

40 251 <u>Post-symptom onset, infectious period (T5)</u>

252 The T5 parameter was informed from three lines of evidence from empirically driven studies:

- time from symptoms onset to the first of two clear RT-PCR tests
- time from symptoms to hospital discharge
- time from symptoms to death

Figure 3 presents the forest plot for the mean time from symptom onset to clearance, based on serial testing meta-analysis (n=15). The mean estimated duration was 13.4 days (95%CI: 10.9-15.8). There was high heterogeneity across studies (Cochrane's Q; p<0.001; *l*²>75%). A random effects (RE) meta-regression model suggested significant variation depending on whether studies included children as part of the sample (n=15 studies; Proportion of between-study variance explained Adj. R² = 43.8%). Overall, the model estimated studies including children had on average 5.8 days

1 2		
2 3 4 5	262	shorter duration than adult only studies (95%CI: 1.7-10.0; p=0.040; SE(p)=0.003). A second univariate
	263	RE meta-regression model suggested that there was non-significant increased mean duration of 4.0
6 7	264	days (95%Cl: -0.6-8.6; p=0.111; SE(p)=0.005; Adj. R ² = 22.0%; n=14) for studies that included
8 9	265	moderate-severe or severe cases, relative to mild or mild-moderate severity cases.
10 11	266	High transmissibility during the first 5 days post symptom onset was described by Cheng et al. [33],
12 13 14	267	based on secondary attack rates for 12 infector-infectee pairs. No contacts (n=1043) with primary
	268	cases were infected after five days of the index case onset of symptoms, inferred by the authors to
15 16	269	suggest transmission occurring at symptom onset (but conceivably also suggest pre-symptomatic
17	270	infection). Based on a cumulative density function, the authors suggest that infectiousness declines
18 19	271	rapidly from onset of infection (distribution was truncated at 30 days); estimated cumulative
20 21	272	infectiousness was 66.9% (95%CI: 28.7-94.8) by day 1, and reached 86.9% (95%CI: 64.3-99.5) by day
22 23	273	5 post-symptom onset (Figure S2).
24 25	274	For tracking studies relating to time to hospital discharge or death, raw case level data were
26 27	275	available (studies n=3).[31,34–36] Histograms of the raw data are presented in Figure 4, along with
28	276	the aggregated distribution. A random effect model suggested a mean duration of 18.1 days (95%ci:
29 30	277	15.1 – 21.0). However, there was significant variation across studies, with time to discharge being
31 32 33	278	4.96 days shorter (95%CI: 2.15- 7.76; [35]), or 3.79 days shorter (95%CI: 0.8-6.7; [31]), than time-to-
	279	death [34].
35 36	280	Two modelling papers use priors (mean: 3.2-3.5 days) to represent clinical infectious period.[14,15]
37	281	However, the distribution for this parameter is right censored when patients are hospitalised or
38 39	282	isolated and therefore not an estimate of the full infectious period per se.
40 41 42	283	Infectious period for symptomatic cases (T3+T5)
43 44	284	Two tracing studies supplied parameter estimates for the full infectious period for patients who
45	285	develop symptoms. [8,29] He et al. [29] inferred from a publicly available dataset of 77 infector-
46 47	286	infectee pairs that infectiousness began 2.3 days (95% CI, 0.8–3.0 days) prior to symptom onset,
48 49	287	peaking at 0.7 days (95% CI, $-0.2-2.0$ days), and continued up to 7 days from onset. The authors
50 51 52 53 54 55 56	288	suggest that the transmission risk diminishes 7 days post symptom onset. This suggests that the
	289	average infectious period, assuming a symptomatic infectious period of 7 days was approximately
	290	9.3 days (7.8-10 days 95%CI, where CI is only reported for the pre-symptomatic period). He et al.
	291	[29] estimated that the proportion of all transmission that was pre-symptomatic was 44% (95% CI,
57	292	25–69%). Ma et al. [8] analysed data from a number of countries (China, Germany, Japan, Malaysia,
58 59 60	293	Singapore, Vietnam), collating 1155 cases from public data. They estimate several parameters,

including "maximum latent period" and the serial interval. The authors estimated the infectious period as maximum latent period minus the serial interval. Given their parameter estimates and methodological approach, infectious period would have been 5 days (range 0-24; IQR: 2-9;

calculated from data presented within the paper).

Seven modelling papers reported duration of infectious period (T3+T5; Table 4), with the reported central tendency for the distribution varying from 3-20 days. The form of the distribution offered to models for this parameter varied considerably, including point estimates (deterministic models), flat (uniform), Gaussian, Weibull and gamma distributions. Li et al. [27] estimated the shortest median duration of 3.45 days, with a flat (uninformative) prior distribution corralled between 3-5 days. In contrast, Zhu et al. [37] used a mean prior of 10 days, with the model estimated mean duration being 12.5 days (variance 10; Weibull distribution). Piccolomini and Zama [38] used a fixed estimate of 20 days infectious period, to model the Italian epidemic. Two papers from the same group [14,15] suggested that infectious period for asymptomatic cases approximated for symptomatic cases where there was no right censoring (that is, transmission being halted through isolation or hospitalisation; gamma distributions of mean 5 or 7 days). Tuite et al. [26,39] also assumed the same duration for "mild" and "severe" symptomatic cases (6-6.5 days). e. e. von

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
311 Viral load dynamics

Viral load was reported from 21 papers using real-time reverse transcriptase polymerase chain reaction (rRT-PCR) testing, generally post-symptomatic monitoring.[3,29,40–59] Qualitatively, the viral dynamics described early increase in viral load, peaking around onset or within 2-4 days of symptom onset (Figure 5 for a theoretical model), before decreasing gradually over the next one to three weeks post symptom onset. Maximum duration of detection ranged from approximately 20-49 days, with the longest duration associated with faecal samples (see below for discussion). The duration where ribonucleic acid (RNA) was recoverable by RT-PCR may have been truncated due to insufficient follow-up in some cases. Studies that have investigated blood samples have provided some evidence for an association with severity of infection [16,60], though it is not clear whether this is a consistent feature of SARS-CoV-2 infection [40].

It should be noted the lack of data on pre-symptomatic or asymptomatic cases with regards viral load. An exception was Kam et al. [61] who describe a pre-symptomatic case in an infant. In another study, Zou et al. [53] undertook serial RT-PCR testing from nasal and throat swab samples from 14 imported cases, and 4 secondary cases, in Guangdong, China. The dynamics of the infection in terms of cycle threshold (Ct) values and RNA copy number were described; Ct values of 30.76, 27.67, 24.56, and 21.48 corresponding to 1.5×10^4 , 1.5×10^5 , 1.5×10^6 , and 1.5×10^7 copies per milliliter. Hence, lower Ct values infer higher viral loads. The authors report on a patient without symptoms, but with positive nasal swabs (Ct values, 22 to 28) and throat swabs (Ct values, 30 to 32) testing positive on days 7, 10, and 11 after contact. Importantly, the authors suggest "the viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients." Furthermore, Kimbell et al. [62] report that Ct values between asymptomatic (21.9 to 31.0), pre-symptomatic (15.3 to 37.9), and symptomatic cases (18.6 to 29.2) within a nursing home environment did not differ significantly. To et al. [59] present data on temporal profile of viral load from saliva samples, and found that median initial and peak viral loads in severe cases were non-significantly higher (p>0.5) by approximately 1 log10 higher than those in mild cases. Liu et al. [58] present data showing viral load being 60 times greater for severe cases relative to mild cases. This lack of pre-symptomatic data may result in left truncation of the risk distribution associated with viral load and shedding. Therefore, the typical timing of peak viral shedding (whether prior to,

viral load at symptom onset from patients sampled in a hospital in China. Furthermore, the author's
 stimate using a separate infector-infectee dataset (n=77) that 44% (95% CI: 25–69%) of infectee

59 343 cases were infected during the pre-symptomatic stage of the infector. Separately, a modelling paper

at, or after onset), and it's impact on transmission, is still uncertain. He et al. [29] reported highest

by Ferretti et al. [63] also appears to support this, estimating that 47% (0.9/2) of total transmission contributing R₀, an overall measure of transmission during an infection, was pre-symptomatic (also see [33]).

Wölfel et al. [50] provides important data on a cohort of nine 'mild' cases which were serially tested using sputum, swabs (throat and nasopharyngeal), urine and faecal samples over time. Importantly, the virus was isolated, and inferences on viral replication could be made. Viral Isolation, and insights into viral replication, improve inference around viral dynamics and transmission risk. The study suggested high viral loads shortly after symptom onset, which declined thereafter over time. Positive cultures were found from day 3-8 post-symptom onset (Figure S3), and the minimum 5% isolation success was achieved up to 9.8 (95% CI: 8.5-21.8) days post onset from throat and lung samples but not faeces, blood or urine.

Page 17 of 63

1

BMJ Open

2 3	355	Discussion						
4 5	256	Informing informiousnoss was challenging given the beterogeneity of evidence available. Virological						
6 7	252	dispersion studies provide rebust time series of infection, however, is limited by inferring the						
8 9 10 11 12 13 14	357	diagnostic studies provide robust time series of infection, nowever, is limited by inferring the						
	358	relationship between PCR diagnostics and infectiousness. These data can also be affected by						
	359	sampling procedure and sample sites (e.g. upper respiratory, lower respiratory, faeces, urine, blood).						
	360	We have excluded RT-PCR durations based on faecal sampling due to the current uncertainty						
	361	whether these data pertain to transmission potential ([50]; see below). Virological studies where						
16	362	culturing has taken place, and where viral replication can be inferred would also be considered						
17 18	363	superior data to infer infectious period, relative to estimates of viral load alone.[50] Where this has						
19	364	taken place, the data would suggest average infectious periods of up to 9.8 days post-symptoms.						
20 21	365	Recent modelling work suggest that the duration of viral detectability could overestimate the						
22 23	366	infectious period somewhere between 2-6 days.[64]						
24 25	367	Viral load studies suggest peak viral load occurs close to symptom onset (potentially, -1 to 7 days of						
26 27	368	onset), however there is uncertainty whether this typically occurs prior to, on, or after onset (Figure						
28	369	5 for conceptual model). High viral loads, measured as Ct values, have been recorded for one week						
29 30	370	to 20 days post symptom onset, with a general decreasing trend with time. For example, To et al.						
31 32	371	[59] estimates a declining slope per day for log10 RNA copies per ml of -0.15 (95% Cl -0.19 to -0.11 ;						
33	372	R^2 =0·71). There are some studies reporting associations between viral load and symptom severity,						
34 35	373	with higher metrics of viral load in severe cases.[3,58,59] However, Zou et al. [53], and more recent						
36 37	374	data from Italy,[64,65] suggest similar viral loads in symptomatic and asymptomatic cases.						
38 39	375	We tested the hypothesis that severity of symptoms had an effect on symptomatic infectious						
40 41	376	duration using a meta-regression approach. There was a trend towards studies that included severe						
42	377	cases tended to have longer duration (estimated to be 4.0 days longer), but the effect was not						
43 44	378	significant. Some studies have reported an association between duration of infectiousness and						
45 46	379	severity (e.g. [58]). But uncertainty of whether this is robust remains. Caution is required when						
47 48	380	comparing severity of symptoms, as objective or standardised metrics are not always reported.						
49 50	381	Virological studies that included children (either mixed adult children, or children only cohorts)						
51 52	382	appeared to have shorter T5 durations (estimate: 5.8 days shorter). Liao et al. [66] present data						
52 53	383	which suggests that children and 'young adults' (<35 years old) infected cases exhibited long						
54 55	384	incubation time (exposure to symptom on-set; mean 7.2 days), and short serial interval (mean 6.5						
56 57 58 59 60	385	days; median 1.9 days; time from onset in primary to onset in secondary case).						

Page 18 of 63

Contact tracing studies provided robust evidence of transmission events, and therefore infectiousness, but can be limited by the inferred timing of events, and symptoms experienced, due to the self-reported nature of data collection (recall bias). The subjective nature of self-reporting indeed can have an impact on case definitions of 'asymptomatic', which has led to some doubt on asymptomatic transmission in one case. [9] Rothe et al. [9] describe a case of apparent asymptomatic transmission from a Chinese visitor to business associates in Germany, which was cast into doubt when health officials reported that the patient had indeed experienced some, albeit minor, symptoms.[67] Rothe et al. [9] subsequently updated the clarification of the patients self-reported symptoms during the presumed asymptomatic infectious period, which included "feeling warm" and "feeling cold". However, the patient only "recognized getting sick" after she returned to China on day four after the presumed exposure event.

Modelling parameters provide information on how COVID-19 data are being used and interpreted in the research community, given the limited data available. Posterior estimates also provide information on the parameter space at which infectious period central tendency reside, given other parameters and assumptions in the model. Models used highly varied approaches to modelling infectious period, which in turn resulted in highly variable parameter estimates used to inform the studies. An important factor to consider when comparing parameter estimates between empirical and modelling studies is the interpretation of the parameter by different disciplines, and even between researchers from the same discipline. The infectious period can be considered significantly context specific and dynamic, and the ability to transmit infection can be modulated by interventions (e.g. through isolation or hospitalisation). Modelling papers, depending on the model structure, can report truncated infectious period accounting for such interventions. Such estimates are not comparable with our definition of the parameters reviewed, and we have attempted to avoid such disparities where we found them.

45 410 Overall duration findings

There are few data for the precise definition of the asymptomatic infectious period (T2) parameter. Some reported asymptomatic cases can actually be pre-symptomatic, when cases are subject to follow-up (e.g.[66]; see discussion above). However, Hu et al. [7] do provide the data for asymptomatic cases [that remain asymptomatic] across their presumed infectious period. Therefore, in the first instance a parameter mimicking their data is probably the best available data over the period of the present study. Note, there is a large variation in this data parameter, and a gamma distribution of a shape alpha 3, beta 2, mean 6, may be appropriate for the initial model runs. Despite these being the primary informative data, caution is required, given the uncertainty around

the relationship between RT-PCR results and infectiousness. Overall, an informed central tendency
of ~6 days, with very low probability draws for durations >20 days for the T2 parameter may be
considered given the current state of knowledge.

The pre-symptomatic period is sometimes referred to as 'preclinical infectious' period (parameter T3). This has been estimated from several papers, and the central tendency of these estimates vary from <1 - 4 days, cautiously approximating to 2 days, on average. Current models have used central tendency estimates of 0.5 to 2.4 days.[14,15,26,39] The relative consistency around the duration of this period allows for some confidence of its distribution. Current understanding of viral dynamics of infection suggest that viral load and shedding increases during post-latent phase, peaking around onset [for symptomatic cases], before declining. [29, 50, 53] This aspect of the natural history of infection may be important when attempting to model transmission dynamics.

Length of infectious period in symptomatic cases that do not isolate (T5 parameter) has also been rarely directly measured in the literature, as serial monitoring of patients in terms of symptoms or viral load (rt-PCR) generally occurs after diagnosis and/or after admission to hospital [from a modelling perspective, this means cases are censored as they are assumed to no longer contribute to transmission]. If natural progression of infection after diagnosis or hospital admission mimics the course of infection for those who do not isolate, the review of the literature describing time to two clear tests is informative. Symptom onset to serial testing clearance [assessed the time to first of two RT-PCR clear tests] averaged 13.4 days from our meta-analysis. In the maximal case, where patients succumb or fully recover from infection, time from symptoms to death or discharge may be informative. Studies that collated such information suggest mean durations of 18.07 days, but with time to discharge being 4.96 days shorter on average than time to death. These values may represent an over estimation of the infectious period; one study suggested that there was on average 2.5 days between end of infectiousness and 'removal' (recovery or death).[37] Cheng et al. [33] provided evidence of transmissibility, based on attack rate from primary to

secondary cases, at around symptom onset. The authors estimate cumulative infectiousness from onset, which suggests that 67% of total infectiousness potential occurs by the first day post-onset. Most of the total infectiousness occurs within 5 days (86.9%) post onset, with the remaining infectiousness potential (13.1%) being distributed up to day 30 (this truncation is an assumption by the authors). It is possible that pre-symptomatic transmission occurred during this study, but the authors do not estimate what proportion of transmissions occurred during a pre-symptomatic infectious period, or its potential duration.

A model by He et al. [29] is informative for overall symptomatic duration (T3+T5), using 77 infector-infectee pairs where COVID-19 transmission occurred in China. The study reported that infectiousness was apparent on average 2.5 days prior to symptoms, reached a peak in risk at 0.6 days before symptoms, and decline up until 7 days after onset (9.5 days total infectious period). The proportion of transmission before symptom onset (area under the curve) was estimated as 44% (95% CI, 25–69%), based on inferences on incubation period. The authors suggest their data supported the view that transmission risk decline substantially after 7 days post-symptoms onset. Model estimates used for infectious period parameter appears to be shorter than virological studies tracking RNA viral load over time. For example, Liu et al. [27] fitted a flat prior distribution for mean duration (D) fixed to vary between: $2 \le D \le 5$ days, and Lavezzo et al. [64] fixed infectious period to 2 days in their epidemic model; whereas viral repeat testing studies provide evidence to suggest high viral loads can be detected to up 20 days (e.g. pharyngeal swabs], and potentially longer from faecal samples (up to 3-4 weeks post symptoms onset)). Oral-faecal transmission risk is currently unknown, but some doubt has been raised about studies that have reported positive RTPCR test results (see [68]; but there may be some evidence of the risk amongst children; [69]). Wölfel et al. [50] has produced an important study that provides some data on viral replication, and the site and duration over which this may be taking place. Their data suggests that viral replication, with high viral loads, occur in the upper respiratory tract, over the first week of symptoms peaking in day 4. Virus could not be isolated from faecal samples, despite high RNA concentration. Furthermore, virus was not isolated from blood or urine in that study.[50]

It should be noted that some of the virological and tracing studies reviewed had small sample sizes (see Study Limitations) and potentially biased towards more severe cases or clusters of infection. It is unknown as to whether these cases are representative of infectious duration generally across populations. However, if symptom severity is linked to infectious duration, one could speculate that this bias could help to explain the some of the difference between model and empirical duration estimates.

49 477 Study limitations

Overall, the studies included were of good quality, though due to the rapid need for information from the global research community many papers are pre-prints that have yet to be reviewed (at time of writing). Many papers were limited in terms of sample sizes, with several papers being case studies of one patient or single cluster outbreaks. There was a diversity of methods employed to infer dynamics of infectiousness across studies, and therefore the evidential base was variable. Some issues around nomenclature were noted, including definitions of asymptomatic, infectious period,

BMJ Open

484 latent, and incubation period. It is possible the same data may have been used across different
485 studies, especially where publicly available data were used.

There was significant heterogeneity across study findings, and this was related to diversity of clinical findings and methods employed. The meta-analysis employed for one parameter (T5) using virological studies, where cross study comparisons could be made, suggested that the heterogeneity was high. Fu et al. [70] cautions against combining studies to give an overall estimate without exploring subgroup or meta-regression analysis, which we have done here. The meta-regression was based on a small number of studies (n=12-13). Cochrane's handbook suggests 10 studies for each level of a meta-regression, however in practice much lower numbers have been used to test hypotheses [22], as is the case here. Fu et al. [70] recommend a minimum of 4 studies per category, and therefore we dichotomised our predictor variables to ensure we met this minimum. Aggregating our categories resulted in crude findings.

Another limitation is that a systematic review was not undertaken to inform this research, hence there is a possibility that some relevant studies were overlooked. However, two independent research groups conducted comprehensive search strategies as part of a broader epidemiological parameters project for COVID-19 [12,13,71,72,73] to inform this research, hence limiting the potential for missing key studies.

501 Conclusion

There are few data to inform asymptomatic infectious period (T2 parameter). One study provide data that suggest a median period of 4-9.5 days, however, given the viral dynamics, this distribution could have an extended tail with low probability long infectious periods of up to 20 days. The pre-symptomatic infectious phase (T3) is quite narrowly defined to a mean of approximately 2 days (range: <1-4) within the literature. However, there is great uncertainty around the infectious period from onset to recovery or death (T5 parameter). The symptom onset until clearance (based on two negative RT-PCR tests) parameter estimate of 13.4 days (95%CI: 10.9-15.8) is informative for T5 parameter, only if one assumes that RT-PCR positive results equate to having infectious potential. Many current models corral the infectious period to shorter time periods than what virological studies have suggested, with one recent study suggesting that duration of viral detectability overestimates the infectious period on average by 2-6 days. While viral RNA can be detected for long periods of time, especially from faecal samples, the ability to isolate the virus from Infected cases quickly declines after one-week post-symptoms. Some modelling papers have assumed that infectious period is invariant to whether cases are asymptomatic or symptomatic, however, the data available are not yet rich enough to inform whether this is a good assumption. Similarly, it is not yet

1 ว		
2 3	517	established whether viral loads are similar between asymptomatic and mild, moderate, or severe
4 5	518	symptomatic cases, with conflicting reports in the literature.
6		
8	519	Word count: 5829
9 10	520	Contributors: AWB conducted the eligibility screening of shortlisted studies, extracted the data and
11 12	521	conducted the analyses, completed the initial draft of the manuscript; SM was involved in
13	522	conception and project coordination; ÁC, KH and FB conducted the initial literature searches; DM,
14 15	523	KOB, KW conducted searches and screened shortlisted studies; AWB, SM, ÁC, KH, FB, DM, KOB, KW,
16 17	524	AB, JG, EL, PW, CM, MC critically reviewed and commented/edited the paper. All authors read and
17 18 19	525	approved the final manuscript.
20 21	526	Competing interests: All authors have completed the ICMJE uniform disclosure form at
21	527	www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted
23 24	528	work; no financial relationships with any organisations that might have an interest in the submitted
25 26	529	work in the previous three years; no other relationships or activities that could appear to have
20 27 28	530	influenced the submitted work
29 30	531	Funding: There are no funders to report for this submission.
31 32	532	Data availability statement: The data used in this paper and code are presented in Supplementary
33 34	533	Material 3 & 4; No additional data available.
35 36	534	Patient and public involvement statement: It was not appropriate or possible to involve patients or
37 38	535	the public in the design, or conduct, or reporting, or dissemination plans of our research
39 40	536	
41 42		
43		
44 45		
46 47		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57		
58 59		
60		

2		
3 4	537	References
5 6 7	538 539	1 Wu F, Zhao S, Yu B, <i>et al.</i> A new coronavirus associated with human respiratory disease in China. <i>Nature</i> 2020; 579 :265–9.
8 9 10 11 12	540 541 542	2 Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. <i>The New England Journal of Medicine</i> 2020; 382 :1199– 207.
13 14 15	543 544	3 Pan Y, Zhang D, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases 2020;20:411–2.
16 17 18 19	545 546	4 Huang C, Wang Y, Li X, <i>et al.</i> Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. <i>The Lancet</i> 2020; 395 :497–506.
20 21 22 23	547 548 549	5 Russell TW, Hellewell J, Jarvis CI, <i>et al.</i> Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020. <i>Eurosurveillance</i> 2020; 25 :2000256.
24 25 26 27 28	550 551 552	6 Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. <i>Jama</i> 2020. 323(18):1775-1776. doi:10.1001/jama.2020.4683
29 30 31 32 33	553 554 555	7 Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Science China Life Sciences 2020;:1–6.
34 35 36 37	556 557 558	8 Ma S, Zhang J, Zeng M, <i>et al.</i> Epidemiological parameters of coronavirus disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven countries. <i>medRxiv</i> 2020. DOI: 10.1101/2020.03.21.20040329
38 39 40 41	559 560	9 Rothe C, Schunk M, Sothmann P, <i>et al.</i> Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. <i>New England Journal of Medicine</i> 2020; 382 :970–1.
42 43 44	561 562	10 Bai Y, Yao L, Wei T, <i>et al.</i> Presumed asymptomatic carrier transmission of COVID-19. Jama 2020. 323(14):1406-1407. doi:10.1001/jama.2020.2565
45 46 47 48 49	563 564 565	11 Anderson RM, Heesterbeek H, Klinkenberg D, <i>et al.</i> How will country-based mitigation measures influence the course of the COVID-19 epidemic? <i>The Lancet</i> 2020; 395 :931–4.
50 51 52	566 567	12 Casey M, Collins A, Hunt K, <i>et al.</i> Pre-symptomatic transmission of SARS-CoV-2 Infection. 2020. doi: https://doi.org/10.1101/2020.05.08.20094870
53 54 55 56 57	568 569 570	13 IEMAG Epidemiology Modelling subgroup. COVID-19 epidemiological parameters summary document. 2020. https://www.gov.ie/en/publication/dc5711-irish- epidemiology-modelling-advisory-group-to-nphet-technical-notes/
58 59 60	571 572	14 Davies NG, Klepac P, Liu Y, <i>et al.</i> Age-dependent effects in the transmission and control of COVID-19 epidemics. <i>medRxiv</i> 2020.

3	573	15 Davies NG, Kucharski AJ, Eggo RM, <i>et al</i> . The effect of non-pharmaceutical									
4	574	interventions on COVID-19 cases, deaths and demand for hospital services in the UK a									
5	575	modelling study. <i>medRxiv</i> 2020. https://doi.org/10.1101/2020.04.01.20049908									
6 7	575	modeling study. <i>meanin 2020</i> . https://doi.org/10.1101/2020.04.01.20049900									
8	576	16 HIQA. Evidence summary for COVID-19 viral load over course of infection. Health									
9	577	Information and Quality Authority, Ireland. Access date: 1st April 2020.									
10	578	https://www.higa.je/reports-and-publications/health-technology-assessment/evidence-									
11	579	summary-covid-19-viral-load-over (accessed 1 Apr 2020).									
12 13	575										
14	580	17 HIQA. Evidence summary for asymptomatic transmission of COVID-19. Health									
15	581	Information and Quality Authority, Ireland, Access date: 1st April 2020.									
16	582	https://www.higa.je/reports-and-publications/health-technology-assessment/evidence-									
17	583	summary-asymptomatic-transmission									
18	505	summary asymptomatic transmission									
19 20	584	18 HIOA. Protocol for evidence synthesis support - COVID-19. Health Information and									
20	585	Quality Authority, Ireland, Access date: 1st April 2020									
22	586	https://www.biga.je/sites/default/files/2020-04/Protocol-for-HIOA-COVID-19-evidence-									
23	500	synthesis-sunnort 1-2 ndf ndf									
24	307	synthesis-support_1-2.put.put									
25	588	19 Munn 7 Peters MD Stern C et al Systematic review or sconing review? Guidance									
26 27	580	for authors when choosing between a systematic or scoping review approach <i>BMC</i>									
27	500	medical research methodology 2018:18:143									
29	390	medicul research methodology 2018,18.143.									
30	591	20 Tricco AC Langlois EV Straus SE Ranid reviews to strengthen health policy and									
31	502	systems: a practical quide World Health Organization Geneva 2017									
32	392	systems. a practical galae. Wond health organization deneva 2017.									
33	593	21 Wan X Wang W Liu L et al. Estimating the sample mean and standard deviation									
34 35	59/	from the sample size, median, range and/or interquartile range RMC medical research									
36	595	methodology 2014.14.125									
37	555	methodology 2014,14.155.									
38	596	Higgins JP, Thomas J, Chandler J, et al. editors. Cochrane handbook for systematic									
39	597	reviews of interventions John Wiley & Sons: 2019									
40 41	337										
42	598	23 Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis.									
43	599	Statistics in medicine 2001; 20 :825–40.									
44											
45	600	Higgins JP, Thompson SG, Deeks JJ, <i>et al.</i> Measuring inconsistency in meta-analyses.									
46	601	BMJ: British Medical Journal 2003; 327 :557.									
47 48											
49	602	25 Higgins JP, Thompson SG. Controlling the risk of spurious findings from									
50	603	meta-regression. Statistics in medicine 2004;23:1663–82.									
51											
52	604	26 Tuite AR, Fisman DN, Greer AL. Mathematical modelling of COVID-19 transmission									
53	605	and mitigation strategies in the population of Ontario, Canada. CMAJ: Canadian Medical									
54 55	606	Association Journal= Journal de L'association Medicale Canadienne 2020. 192 (19) E497-									
56	607	E505; DOI: https://doi.org/10.1503/cmaj.200476									
57											
58											
59											
60											

1									
2 3	608	27 Li R. Pei S. Chen B. <i>et al.</i> Substantial undocumented infection facilitates the ranid							
4	609	dissemination of novel coronavirus (SARS-CoV2). Science 2020, DOI:							
5	610	10 1126/science abb3221							
7	010								
8	611	28 Hoehl S, Rabenau H, Berger A, et al. Evidence of SARS-CoV-2 infection in returning							
9	612	travelers from Wuhan, China. New England Journal of Medicine 2020; 382 :1278–80.							
10 11									
12	613	29 He X, Lau EH, Wu P, <i>et al.</i> Temporal dynamics in viral shedding and transmissibility of							
13	614	COVID-19. <i>Nature Medicine</i> 2020;:1–4.							
14	C1F	20 Mai M/E Li Z Chiew CL et al Dress matematic Transmission of CADE CoV 2							
15 16	615	30 Wel WE, LI Z, Chiew CJ, <i>et al.</i> Presymptomatic Transmission of SARS-CoV-2—							
10	616	Singapore, January 23–March 16, 2020. <i>Morbidity and Mortality Weekly Report</i>							
18	61/	2020;69:411.							
19	618	Tindale I. Wallinga I. Coombe M. et al. Transmission interval estimates suggest pre-							
20	610	symptomatic spread of COVID-19, https://www.medrviv.org/content/101101/202003							
21	620	0220020082 v1 2020							
23	020	0520029985 V1 2020.							
24	621	32 Peak CM, Kahn R, Grad YH, <i>et al.</i> Modeling the Comparative Impact of Individual							
25	622	Quarantine vs. Active Monitoring of Contacts for the Mitigation of COVID-19. medRxiv							
26 27	623	2020. doi: https://doi.org/10.1101/2020.03.05.20031088							
27 28									
29	624	33 Cheng H-Y, Jian S-W, Liu D-P, et al. High transmissibility of COVID-19 near symptom							
30	625	onset. <i>medRxiv</i> 2020. doi: https://doi.org/10.1101/2020.03.18.20034561							
31									
32 33	626	34 Linton NM, Kobayashi T, Yang Y, <i>et al.</i> Incubation period and other epidemiological							
34	627	characteristics of 2019 novel coronavirus infections with right truncation: a statistical							
35	628	analysis of publicly available case data. <i>Journal of clinical medicine</i> 2020; 9 :538.							
36 27	620	25 Kramer M. Bigett D. Xu. B. et al. Enidemiological data from the nCoV 2010 Outbreak:							
38	620	Early Descriptions from Publicly Available Data 2020							
39	621	https://virelogical.org/t/opidemiological.data.from.the.prov.2019.outbreak.early							
40	627	https://virological.org/t/epidemiological-data/227 Accessed, 20th March 2020							
41 42	032	descriptions-from-publiciy-available-data/337 Accessed. 29th March 2020							
42 43	633	36 Xu B, Gutierrez B, Mekaru S, <i>et al.</i> Epidemiological data from the COVID-19 outbreak,							
44	634	real-time case information. <i>Scientific data</i> 2020; 7 :1–6.							
45									
46	635	37 Zhu H. Transmission Dynamics and Control Methodology of COVID-19: a Modeling							
47 48	636	Study. <i>medRxiv</i> 2020;:2020.03.29.20047118. doi:10.1101/2020.03.29.20047118							
49									
50	637	38 Piccolomiini EL, Zama F. Monitoring Italian COVID-19 spread by an adaptive SEIRD							
51	638	model. <i>medRxiv</i> 2020. doi: https://doi.org/10.1101/2020.04.03.20049734							
52 53	620	20 Tuite AD Crear AL Firmer DN COV/ID 2010 Transmission Medal 10 March 2020							
55 54	639	39 Tulle AR, Greer AL, Fisman DN. COVID-2019 Transmission Model 10-March-2020.							
55	o4U	υπινειsity οι τοτοπίο							
56	641	40 Holshue ML DeBolt C. Lindquist S. <i>et al.</i> First case of 2019 novel coronavirus in the							
5/ 58	642	United States. New England Journal of Medicine 2020:382							
59									
60									

3	643	41 Kam K, Yung CF, Cui L, <i>et al.</i> A Well Infant with Coronavirus Disease 2019 with High
4 5	644	Viral Load. Clinical Infectious Diseases 2020. ciaa201, https://doi.org/10.1093/cid/ciaa201
5 6		
7	645	42 Kim JY, Ko J-H, Kim Y, <i>et al.</i> Viral load kinetics of SARS-CoV-2 infection in first two
8 9	646	patients in Korea. Journal of Korean medical science 2019;35.
10	647	43 Kujawski SA. Wong KK. Collins JP. <i>et al.</i> First 12 patients with coronavirus disease
11	648	2019 (COVID-19) in the United States. <i>medRxiv</i> 2020. doi:
12	649	https://doi.org/10.1101/2020.03.09.20032896
13	045	11195.77 401.016/ 10.1101/ 2020.05.20052050
14	650	44 Lim J. Jeon S. Shin H-Y. <i>et al.</i> Case of the index patient who caused tertiary
16	651	transmission of Coronavirus disease 2019 in Korea: the application of loninavir/ritonavir
17	652	for the treatment of COVID-19 pneumonia monitored by quantitative BT-PCB. <i>Journal of</i>
18	652	Koroan Modical Science 2020:25
19	055	Koreun meulcui science 2020, 35 .
20	654	45 Marchand-Senécal X, Kozak R, Muhareka S, et al. Diagnosis and Management of First
21	054	45 Warchand-Senecar X, Kozak K, Wubareka S, et al. Diagnosis and Wanagement of First
22 23	655	Case of COVID-19 in Canada: Lessons applied from SARS. <i>Clinical Injectious Diseases</i> 2020.
24	656	46 Tap IV Macc NM That BTT at al. Duration of viral detection in threat and rectum of
25	657	a notiont with COVID 10, modBig 2020, doi:
26	057	a patient with COVID-19. <i>Medicin</i> 2020. doi:
27	658	https://doi.org/10.1101/2020.03.07.20032052
28	650	47 Theyaraian L Nguyen TH Keyteckes M at al Breadth of concemitant immune
29	059	47 Thevalajari i, Nguyen TH, Koutsakos W, et al. Breauth of conconnitant infinute
31	660	Addition 2020 as 452.5
32	661	Medicine 2020; 26 :453–5.
33	662	48 To KK Teans OT, Chik Yan VC, at al. Consistent detection of 2010 novel coronavisus
34	002	48 TO KK, Isang OT, Chik-fall FC, <i>Pt UI</i> . Consistent detection of 2019 hover coronavirus
35	663	In saliva. Chilicul Injectious diseases: un official publication of the infectious Diseases
30 27	664	Society of America 2020. claa149, https://doi.org/10.1093/cld/claa149
38	66F	40 Woolfel B. Cormon VM. Guggomos W. at al. Clinical presentation and virological
39	003	49 Woener R, comman viv, duggernos W, et ul. Cimical presentation and virological
40	666	assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated
41	667	transmission cluster. <i>medRxiv</i> 2020. doi: https://doi.org/10.1101/2020.03.05.20030502
42	<u> </u>	50 Wälfel D. Cormon VM. Customer W. et al. Virelegical accessment of begritalized
43	668	50 Woller R, Corman VW, Guggerios W, <i>et al.</i> Virological assessment of hospitalized
44 45	669	patients with COVID-2019. Nature 2020;:1–10.
46	670	51 Yu T. Chon C. Zhu Z. <i>et al.</i> Clinical foatures and dynamics of viral load in imported and
47	670	non-imported nationts with COVID 10. International Journal of Infectious Diseases: IID:
48	671	Official Dublication of the International Conjecture for Infectious Diseases. IJD.
49	672	Official Publication of the International Society for Infectious Diseases 2020.
50	673	https://doi.org/10.1016/j.ijid.2020.03.022
52	674	E2 Voung DE Ong SWK Kalimuddin S at al Enidomiologic Features and Clinical Course
53	0/4	of Dationts Infosted with CARS CoV 2 in Singapore, IAAAA Journal of the American Adadiant
54	675	or Patients infected with SARS-COV-2 in Singapore. JAMA-Journal of the American Medical
55	6/6	Association 2020. 323(15):1488-1494. doi: 10.1001/jama.2020.3204.
56	677	E2 Joul Buon F. Huong M. at al CARC Cold 2 wirelload in unner receivatory or evine
5/	677	200 L, Rudii F, Rudiig IVI, et ul. SARS-COV-2 Viral load in upper respiratory specimens
50 59	6/8	or infected patients. <i>New England Journal of Medicine</i> 2020; 382 :1177–9.
60		

1												
2 3												
4	679	54 Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with										
5	680	severe Covid-19. New England Journal of Medicine 2020. 382:1787-1799										
0 7 8	681	DOI: 10.1056/NEJMoa2001282										
9	682	55 Chen W, Lan Y, Yuan X, <i>et al</i> . Detectable 2019-nCoV viral RNA in blood is a strong										
10 11	683	indicator for the further clinical severity. <i>Emerging Microbes & Infections</i> 2020; 9 :469–73.										
12 12	684	56 Goh KJ, Choong MC, Cheong EH, et al. Rapid Progression to Acute Respiratory										
14	685	Distress Syndrome: Review of Current Understanding of Critical Illness from COVID-19										
15 16	686	Infection. Ann Acad Med Singapore 2020; 49 :1–9.										
17	687	57 Hill KJ, Russell CD, Clifford S, <i>et al.</i> The index case of SARS-CoV-2 in Scotland: a case										
18 19	688	report. The Journal of Infection 2020; DOI:https://doi.org/10.1016/j.jinf.2020.03.022										
20	689	58 Liu Y, Yan L-M, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. The										
21 22 23	690	Lancet Infectious Diseases 2020; DOI:https://doi.org/10.1016/S1473-3099(20)30232-2										
24	691	59 To KK-W. Tsang OT-Y. Leung W-S. <i>et al.</i> Temporal profiles of viral load in posterior										
25	692	oropharyngeal saliva samples and serum antibody responses during infection by SARS-										
26	693	CoV-2: an observational cohort study. The Lancet Infectious Diseases 2020:										
27 28 20	694	DOI:https://doi.org/10.1016/S1473-3099(20)30196-1										
29 30	695	60 Fang Z. Zhang Y. Hang C. <i>et al.</i> Comparisons of nucleic acid conversion time of SARS-										
31	696	CoV-2 of different samples in ICU and non-ICU patients. The Journal of Infection 2020:										
32 33	697	S0163-4453(20)30139-0. doi: 10.1016/j.jinf.2020.03.013.										
34	698	61 Kam KO, Yung CE, Cui L, <i>et al</i> . A Well Infant with Coronavirus Disease 2019 (COVID-										
35 36	699	19) with High Viral Load. Clinical Infectious Diseases: An Official Publication of the										
37 38	700	Infectious Diseases Society of America 2020; ciaa201, https://doi.org/10.1093/cid/ciaa201										
39	701	62 Kimball A. Hatfield KM. Arons M. <i>et al.</i> Asymptomatic and Presymptomatic SARS-										
40	702	CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility-King County.										
41 42	703	Washington, March 2020. MMWR Morbidity and mortality weekly report 2020;69.										
43 44	704	63 Ferretti L. Wymant C. Kendall M. <i>et al.</i> Quantifying SARS-CoV-2 transmission suggests										
45	705	epidemic control with digital contact tracing. Science 2020, DOI:										
46 47	706	10.1126/science.abb6936										
48	707	64 Lavezzo E. Franchin F. Ciavarella C. et al. Suppression of COVID-19 outbrook in the										
49	707	municipality of Vo. Italy medRxiv 2020: doi:										
50 51	700	https://doi.org/10.1101/2020.04.17.20052157										
51 52	709	https://doi.org/10.1101/2020.04.17.20055157										
53	710	65 Cereda D. Tirani M. Rovida F. <i>et al.</i> The early phase of the COVID-19 outbreak in										
54	711	Lombardy, Italy [published online ahead of print March 20, 2020] arXiv 2020.										
55	712	arXiv:2003.09320										
56 57	, 12											
58												
59												
60												

1		
2		
4	713	66 Liao J, Fan S, Chen J, <i>et al.</i> Epidemiological and clinical characteristics of COVID-19 in
5	714	adolescents and young adults. <i>medRxiv</i> 2020. doi:
6	715	https://doi.org/10.1101/2020.03.10.20032136
7 0	716	67 Kunforschmidt K. Study claiming now coronavirus can be transmitted by people
0 9	716	67 Ruprerschmidt R. Study claiming new Coronavirus can be transmitted by people
10	/1/	without symptoms was nawed. Science 2020; 3 .
11	710	68 Hu E Chen E Wang V et al Eailed detection of the full-length genome of SARS-CoV-2
12	710	by ultra doop conversing from the recovered and discharged nations retected viral DCP
13	719	positive modByin 2020 doi: https://doi.org/10.1101/2020.02.27.20042200
14 15	720	positive. <i>mearxiv</i> 2020. doi: https://doi.org/10.1101/2020.05.27.20045299
16	721	69 Xing Y. Ni W. Wu Q. <i>et al.</i> Prolonged presence of SARS-CoV-2 in feces of pediatric
17	722	patients during the convalescent phase. <i>medRxiv</i> 2020: doi:
18	723	https://doi.org/10.1101/2020.03.11.20033159
19	723	
20 21	724	Fu R, Gartlehner G, Grant M, <i>et al.</i> Conducting quantitative synthesis when
22	725	comparing medical interventions: AHRQ and the Effective Health Care Program. Journal
23	726	of clinical epidemioloav 2011: 64 :1187–97.
24	-	, · · · · · · · · · · · · · · · · · · ·
25	727	71 Griffin JM, Collins AB, Hunt K, et al. A rapid review of available evidence on the serial
20 27	728	interval and generation time of COVID-19. medRxiv. 2020. doi:
28	729	https://doi.org/10.1101/2020.05.08.20095075
29	, 25	
30	730	72 McAloon CG, Collins A, Hunt K et al. The incubation period of COVID-19: A rapid
31	731	systematic review and meta-analysis of observational research. medRxiv. 2020. doi:
32 33	732	https://doi.org/10.1101/2020.04.24.20073957
34		
35	733	73 Lane EA, Barrett DJ, Casey M, et al. Country differences in hospitalisation,
36	734	length of stay and admission to Intensive Care Units due to SARS-CoV-2 infection: a rapid
3/	735	review of available literature. medRxiv. 2020. doi:
30 39	736	https://doi.org/10.1101/2020.05.12.20099473
40		
41	/3/	74 Zhou F, Yu T, Du R, <i>et al.</i> Clinical course and risk factors for mortality of adult
42	738	inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. <i>The Lancet</i>
43	739	2020; DOI:https://doi.org/10.1016/S0140-6736(20)30566-3
44 45	740	75 Forever N. Jourden D. Nedicti Cileni C. et al. Depart O. Juppet of per
46	740	75 Ferguson N, Laydon D, Nedjati Gilani G, <i>et al.</i> Report 9: Impact of non-
47	741	pharmaceutical interventions (NPIS) to reduce COVID19 mortality and healthcare
48	/42	demand. 2020; DOI: https://doi.org/10.25561/77482
49 50	740	76 Cail XIII Lip D. et al. A Case Series of children with 2010 nevel serenavirus
50 51	745	information clinical and anidomiological features. <i>Clinical Informaticus</i> Disagrees 2020, ciap108
52	744	dei: 10.1002 (sid (size 100
53	745	UUI. 10.1093/CIU/CIdd198.
54	7/6	77 Cai O Huang D Ou P et al COVID-19 in a Designated Infectious Diseases Hospital
55	7/7	Outside Hubei Province China Alleray 2020 https://doi.org/10.1111/all.1/200
50 57	/4/	Guisiae Haber Flownee, ennia. Anergy 2020. https://doi.org/10.1111/aii.14305
58		
59		
60		

1										
2 3	7/8	78 Chen D. Xu W. Lei 7 et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A								
4	740 7/9	case report International Journal of Infectious Diseases 2020								
5	750	DQI:https://doi.org/10.1016/i.jjid.2020.03.003								
0 7	750	Domit(p3.//doming/10.1010/j.ijid.2020.03.005								
8	751	79 Cheng S-C, Chang Y-C, Chiang Y-LF, <i>et al.</i> First case of Coronavirus Disease 2019								
9	752	(COVID-19) pneumonia in Taiwan. <i>Journal of the Formosan Medical Association</i> 2020:								
10	753	https://doi.org/10.1016/i.ifma.2020.02.007								
11 12										
13	754	80 Lee N-Y, Li C-W, Tsai H-P, et al. A case of COVID-19 and pneumonia returning from								
14	755	Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic. Journal of								
15	756	Microbiology, Immunology and Infection 2020; S1684-1182(20)30060-8.								
16										
17 18	757	81 Ling Y, Xu S-B, Lin Y-X, <i>et al.</i> Persistence and clearance of viral RNA in 2019 novel								
19	758	coronavirus disease rehabilitation patients. Chinese medical journal 2020; 133(9):1039-								
20	759	1043. doi: 10.1097/CM9.000000000000774.								
21										
22	760	82 Liu F, Xu A, Zhang Y, <i>et al.</i> Patients of COVID-19 may benefit from sustained								
25 24	761	lopinavir-combined regimen and the increase of eosinophil may predict the outcome of								
25	762	COVID-19 progression. International Journal of Infectious Diseases 2020.								
26	763	DOI:https://doi.org/10.1016/j.ijid.2020.03.013								
27	764	22 Ou VM Kang FM Cong LIV Decitive result of fore Cov 2 in coutum from a sured								
28 20	764	as Qui fivi, Kang Elvi, Cong HY. Positive result of Sars-Cov-2 in Sputum from a cureu national with COVID 10. Travel Medicine and Infectious Disease 2020u101610. 101610.								
30	/05	patient with COVID-19. Travel medicine and injectious Disease 2020;:101019–101019.								
31	766	84 Yuan J, Kou S, Liang Y, <i>et al.</i> Clinical Characteristics on 25 Discharged Patients with								
32	767	COVID-19 Virus Returning. <i>medRxiv</i> 2020;:2020.03.06.20031377.								
33 34	768	doi:10.1101/2020.03.06.20031377								
35										
36	769	85 Chen J, Qi T, Liu L, <i>et al.</i> Clinical progression of patients with COVID-19 in Shanghai,								
37	770	China. Journal of Infection 2020. https://doi.org/10.1016/j.jinf.2020.03.004								
38										
40	771	86 Le HT, Nguyen LV, Tran DM, <i>et al.</i> The first infant case of COVID-19 acquired from a								
41	772	secondary transmission in Vietnam. The Lancet Child & Adolescent Health 2020.								
42	773	https://doi.org/10.1016/S2352-4642(20)30091-2								
43										
44 45	774	87 Qiu H, Wu J, Hong L, <i>et al.</i> Clinical and epidemiological features of 36 children with								
46	775	coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study.								
47	776	The Lancet Infectious Diseases 2020. https://doi.org/10.1016/S1473-3099(20)30198-5								
48		99 Mu V. Cuo C. Tang L. et al. Prolonged processo of SARS CoV 2 vital RNA in faceal								
49 50	/// 070	samples. The Langet Castroonterology & Hengtology 2020/E:424 E								
50 51	//8	samples. The Luncer Gustroenterology & Heputology 2020, 3 .434–3.								
52	779	89 Lourenco L Paton R. Ghafari M. <i>et al.</i> Fundamental principles of epidemic spread								
53	780	highlight the immediate need for large-scale serological surveys to assess the stage of the								
54	781	SARS-CoV-2 enidemic <i>medRxiv</i> 2020 doi: https://doi.org/10.1101/2020.03.24.20042291								
55 56	,01	on the cover explanation meaning 2020, won https://wonoig/10.1101/2020.05.24.20042251								
57	782									
58										
59	783									
60										

Tables and figures

Figure 1: Simulation of the parameter distribution inferred for duration infectious period for asymptomatic cases (T2) inferred infectious period for Davies et al. (2020a), grey/blue curve, Davies et al. (2020b) pink curve [model priors]. Green curve: Ma et al. (2020). Histogram is the distribution of asymptomatic cases to two clear tests reported by Hu et al. (2020). Reference lines are point estimates reported from Zhou et al. (2020), Li et al. (2020), and Tuite et al. (2020a & b).[7,8,14,15,26,27,39,71]

Figure 2: Simulation of the parameter distribution used for T3 (the duration of the pre-symptomatic infectious period for those infected individuals who subsequently develop symptoms). Curves represent simulated approximations of distributions, given information provided from primary literature. Vertical lines represent point estimates where distributions could not be inferred (see table 2). 1. Peak et al. [posterior]; 2. Davies et al. 2020b [prior]; 3. Rothe et al. 2020; 4. He et al. 2020; 5. Davies et al. 2020a [prior]; 6. Wei et al. 2020. [9,14,15,29,30,32]

- Figure 3: Forest plot of the mean duration from onset of symptoms to death or recovery (T5) based on virological studies
- Figure 4: Frequency distribution of T5, time from onset of symptoms to recovery (here hospital discharge or death), using patient level raw data from Kraemer et al. ([35,36]; pink bars), Linton et al. ([34]; purple bars) and Tindale et al. ([31]; green bars). Blue solid line is the kernel density of the aggregated dataset Dashed lines represent the mean and 95%CI from a random effects regression model.
- Figure 5: Composite inferred model for cycle threshold (CT) value changes from serial RT-PCR testing for SARS-COV2; currently uncertain whether peak viral load typically occurs prior to, on, or post-symptom onset (primary literature informing this model includes [29,50,53,59]).

Table 1: Reported infectious period (IP) for asymptomatic cases (T5 parameter) from virological

811 studies where serial diagnostic tests were undertaken to infer IP; tracking studies where IP is

812 inferred from contact tracing; modelling studies where IP is reported as a prior (assumed parameter

813 value) or an posterior estimate.

No.	Study	Countries	Parameter (days)	n	Central tendency reported	Variati on (days; inclus.)	Comment				
Virolo	Virological studies										
[74]	Zhou et al. (2020)	China	11 days	1	Max		This study serially swabbed and tested symptomatic (17) and asymptomatic (1) cases via RTPCR. The single asymptomatic case tested positive up to 11 days post contact with an infected patient (presumed point of exposure).				
[7]	Hu et al. (2020)	China	9.5 days	24	Median	1-21 range	Serial testing. Period between "onset" (where onset relates to first positive test) and clearance, adjudged via two negative RTPCR tests, deemed by the authors to be the 'communicable period'. IQR: 3.5-13				
Track	ing studies										
[8]	Ma et al. (2020)	China, Germany, Japan, Singapore, South Korea, Malaysia, Vietnam	7.25 days*	49	Mean	5.91- 8.69 (95%CI)	*Ma et al. (2020) does not report infectious period for asymptomatic cases explicitly within their paper. The authors estimated the infectious period as the upper estimated latent period minus the serial interval, using a dataset of 1155 cases from several countries (latent period was estimated with 11 infector-infectee pairs; serial interval was estimated from 689 infector-infectee pairs). Ma et al. (2020) reported a mean upper limit of latent period of 2.52 days; the mean serial interval for asymptomatic cases (using date of diagnosis for onset) was estimated to be 9.77 (94%CI: 8.43, 11.21).				

[7]	Hu et al. (2020)	China		3		4-9 range	Cluster of infection within family, where the primary case was asymptomatic. The transmissions to secondary cases occurred over a period 4-9 days post the presume point of exposure for the primary case.
Mode	ling studies						
[27]	Li et al. (2020)	China	3.5* [posterior from a model estimating duration for undocumen ted cases]		Median	3.19- 3.78 95%CI	Li et al. (2020) do not expli attempt to model asymptomatic cases, or the infectious duration. Instead the population infected is divided into 'documented' 'undocumented'. Documen were all cases where patie had symptoms severe enou- to be confirmed infected; a other cases were considered undocumented. Therefore this estimate represents asymptomatic and 'mild' cases. The 95%CI around the median infectious period estimate was 3.19-3.78
[26,39] Tuite et al. (2020a &b)	Canada	6-6.5 [Prior]	. 7	[Fixed parameter within a deterministi c model]		Mathematical model [deterministic], with a fixe parameter estimate of 6 o days. Important to note th duration for 'mild' was equ to severe cases.
[14]	Davies et al. (2020) (a)	UK	7 days [Prior]		Mean		Model with asymptomatic infection compartment. Modelled with a gamma distribution, beta 1.4; alph Despite, the subclinical asy of this parameter, it could considered analogous to to infectious period without intervention.
[15]	Davies et al. (2020) (b)	UK	5 days [Prior]		Mean		Model with asymptomatic infection compartment. Modelled with a gamma distribution, k=4. Authors: "Assumed to be the same duration as total infectious period for clinical cases, including preclinical transmission"

Table 2: Reported infectious period (IP) for pre-symptomatic cases (T3 parameter) from virological
studies where serial diagnostic tests were undertaken to infer IP; tracking studies where IP is
inferred from contact tracing; modelling studies where IP is reported as a prior (assumed parameter

818 value) or an posterior estimate.

1 2 3

4

5

6

	Study	Location	Parameter (days)	Central tendency reported	Variation (days; inclus.)	Comment
	Virological stu	ıdies				
3]	Pan et al. (2020)	Beijing, China	1	Median		Case study of two individuals tracked due to exposure to an infected patient was serially tested prior to onset of symptoms.
8]	Hoehl et al. (2020)	Flight from Wuhan to Germany	1	Median		Case study of serially tested at risk cohort flying from Wuhan to Germany. Two patients were asymptomatic test positive; additionally virus isolation was achieved, indicating potential infectiousness.
	Tracking stud	ies				
L]	Huang et al. (2020)	Nanjing, China	4	Median	3-5 range	Follow-up tracing case study cluster of infection within a family demonstrating pre- symptomatic infection (n=10)
)]	Rothe et al. (2020)	Germany	2	Median	1-3 range	Tracing case study of a cluster of infections whereby presymptomatic transmission occurred (n=3).
29]	He et al. (2020)	Vietnam, Malaysia, Japan, China, Taiwan, USA, Singapore	2.3	Mean 🥍	95% CI, 0.8–3.0	Tracing paper infector- infectee pairs. Estimated from serial interval and incubation periods. N=77
i0]	Wei et al. (2020)	Singapore	2.5	Median	2-3 (IQR)	Tracing study investigating pre- symptomatic infections from primary cases to secondary cases in 7 clusters. N=8 primary cases. T3 estimated as the min. days between transmission period (TP) and primary case

[32]	Modelling stur Peak et al. (2020)	dies				2-6 days.
[32]	Peak et al. (2020)					
		Massachusetts	0.8 [estimate]	Mean	-0.29-1.98 95% CI*	Modelling paper estimated under two scenarios – a serial interval of 4.8 days or 7.5 days. Under scenario one, the model estimated a period of pre-symptomatic transmission (median: 0.71). * the lower range was fixed at zero as the model allowed for no pre-symptomatic infectious case.
37]	Zhu et al. (2020)	Wuhan, China	1.0 [estimate]	Mean		Modelling paper. Model estimated point value – This is a model derived value
14]	Davies et al. (2020) (a)	UK	2.4 [prior]	Mean		Modelling paper. Gamma distribution; k=5.
[15]	Davies et al. (2020) (b)	UK	1.5 [prior]	Mean		Modelling paper. Gamma distribution: k=4
26,39]	Tuite et al. (2020a & b)	Canada	0.5, 1 [prior]	Fixed		Modelling paper. Fixed parameter within a deterministic model.
75]	Ferguson et al. (2020)	UK	0.5 [prior]	Fixed		Modelling paper. Fixed parameter within this model, whereby infectiousness was assumed to begin 12 hours symptom onset.
31]	Tindale et al. (2020)	Tianjin, China, and Singapore	2.9-2.6 [estimate]	Mean	1.2-8.2 mean range, depending on early or late cases, or whether in Tianjin, Singapore	Statistical modelling study estimating period pre-symptomatic transmission inferred from estimates of serial interval and incubation periods for populations in Tianjin and Singapore (n=228).
819						

Table 3: Reported infectious period (IP) for post-symptomatic cases (T5 parameter) from virological
studies where serial diagnostic tests were undertaken to infer IP [onset to ≥2 tests]; tracking studies
where IP is inferred from patient histories from onset to recovery or death; modelling studies where

824 IP is reported as a prior (assumed parameter value) or an posterior estimate.

No.	Study	Location	Parameter (days)	Central tendenc y reporte d	Variation (days; inclus.)	Comment
	Virological st	udies			1	1
[76]	Cai et al. 2020 (a)	China	12	Median	6-22 range	Serial testing study of n=10 mild cases RT-PCR confirmed in children. IQR: 8-15 days
[77]	Cai et al. 2020 (b)	China	14	Median	9-19 (IQR)	Serial testing study with n=298 confirmed (RT-PCR) cases treated within hospital setting
[78]	Chen et al.(2020)	China	12	Max.		Single case study for a patient admitted to hospital where RT-PCR serial testing was undertaken. Patient had an additional positive test at day 17, but subsequently tested negative
[79]	Cheng et al. (2020)	China	21	Max.		Case study of single patient serially tested by RT-PCR
[7]	Hu et al. (2020)	China	12	Median	12-14 (IQR)	Serial testing study of patients who were first tested (qRT-PCR) when asymptomatic; this subset subsequently developed symptoms (n=5).
[42]	Kim et al. (2020)	Korea	15.5	Median	14-17 (range)	Serial testing of two confirmed cases via RT-PCR. Viral load highest during early phase of infection (day 3-5).
[43]	Kujawski et al. (2020)	USA	26	Max.		Serial testing of two confirmed cases via RT-PCR. Mild to moderate symptoms.
[80]	Lee et al. (2020)	Taiwan	20	Max.		Serial testing (RT-PCR) of a single patient hospitalised presenting with pneumonia
[44]	Lim et al. (2020)	South Korea	16	Max.		Serial testing (RT-PCR) of a single patient hospitalised presenting with pneumonia. Two clear tests day 11, virus

						detectible again up to o 16.
[81]	Ling et al. (2020)	China	9.5	Median	2-22 (range)	Serial testing of two confirmed cases via RT- n=66. IQR: 6-11 days, oropharyngeal samplin Mix of adult and childre
[82]	Liu et al. (2020)	China	11	Median	7-18 range	Serial testing of two confirmed cases via RT- n=10. 10-13 (IQR); adul mild, moderate, and se cases.
[45]	Marchand- Senéca et al. (2020)	Canada	23	Max		Serial testing (RT-PCR) single patient hospitalis presenting with pneum
[3]	Pan et al. (2020)	China	10	Median	8-12 range	Serial testing (RT-PCR) two patients hospitalise Viral loads peaked days post-onset.
[83]	Qu et al. (2020)	China	22	Max		Serial testing (RT-PCR) single patient hospitalis
[46]	Tan et al. (2020)	Vietnam	16	Max		Serial testing (RT-PCR) single patient hospitalis throat sample.
[47]	Thevarajan et al. (2020)	Australia	7	Max		Serial testing (RT-PCR) single patient hospitalis throat sample. Highest load on first test at day nasopharyngeal; day 6 sputum.
[69]	Xing et al.(2020)	China	14	Median		Serial testing (RT-PCR) three (children) patient hospitalised. Mild-mod infecting. Positive viral samples from faeces up weeks post-symptoms.
[52]	Young et al. (2020)	Singapore	12.5	Median		Serial testing (RT-PCR) patients hospitalised. Adults. Viral load peake over testing series at da since onset.
[84]	Yuan et al. (2020)	China	6	Median	4-10 (IQR)	Serial testing (RT-PCR) patients hospitalised. Children and adults. "N severe" cases.
[74]	Zhou et al. (2020)	China	20	Median	16-23 IQR	Serial testing (RT-PCR) 191 patients hospitalise two hospitals. Adults. 5 died. Survivors (n=137) Median (IQR) 20.0 days (17.0–24.0): Non-surviv

						days (15.0–22.0); Shed continued until death. Inferred shedding perio 37 days.
[85]	Chen J. et al. (2020)	China	11	Median	10-12 (95%CI)	Serial testing (RT-PCR) 242 patients hospitalise Adults. 90% mild/asymptomatic; 10 severe/critical.
[60]	Fang et al. (2020)	China	15.7	Mean	6.7 (sd)	Serial testing (RT-PCR) non-ICU patients hospitalised. Adults. Na samples.
[60]	Fang et al. (2020)	China	22.3	Mean	3.6 (sd)	Serial testing (RT-PCR) ICU patients hospitalise Adults. Nasal samples.
[57]	Hill et al. (2020)	Scotland	9	Max.		Serial testing (RT-PCR) single patient (adult) hospitalised; nasal sam [throat sample: 6 days] Mild.
[86]	Le et al. (2020)	Vietnam	12	Max.		Serial testing (RT-PCR) single patient (infant) hospitalised. Mild.
[58]	Liu et al. (2020)	China	10	Max.	7	Serial testing (RT-PCR) patients hospitalised. Adults. Mixed Mild/sev cases. N=76. 90% "earl viral clearance" within 10days
[87]	Qiu et al. (2020)	China	10	Mean	7-22 range	Serial testing (RT-PCR) patients hospitalised. Children. N=36. Mild an moderate cases.
[59]	To et al. (2020)	Hong Kong	25	Max.	2	Serial testing (RT-PCR) patients hospitalised. N Seven patients reporte viral detection >20 day viral load peaked durin first week post-onset o symptoms.
[88]	Wu et al.	China	16.1	Mean	6.7 (sd)	Serial testing (RT-PCR) patients hospitalised. Adults. N=74. Severe a non-severe cases.
	Tracking studi	ies	1			
[31]	Tindale et al. (2020)	Singapore	18	Median	9-33 range	Time from onset to

	Kraemer et al. (2020a); [later published as: Xu et al. 2020]	Various	19	Median	3-37 range	Time from onset to discharge; Range: 3-37 n=70
[34]	Linton et al. (2020)	Wuhan, China	13	Median	6-41 range	Time from onset to dea range 6-41
[35,36]	Kraemer et al. (2020b)	Japan and China	19.25	Mean	12-24 range	Time from onset to dea n=4
[49,50]	Wölfel et al. (2020)	Germany	3-8 days	absolute	3-8 range	Tracked infection in mi cases in Germany, undertaking viral isolat studies to assess active replication across a nur of samples sites (upper respiratory tract, blood urine, faeces) over the duration of infection. 5 isolation success was achieved up to 9.78 (95 8.45-21.78) days post of n=9
825		,		4		

Table 4: Reported infectious period (IP) for symptomatic cases (T3+T5 parameter) from virological
studies where serial diagnostic tests were undertaken to infer IP [exposure to ≥2 neg. tests]; tracking
studies where IP is inferred from patient histories from onset to recovery or death; modelling studies
where IP is reported as a prior (assumed parameter value) or an posterior estimate.

No.	Study	Location	Parameter (days)	Central tendency reported	Variation (days; inclus.)	Comment
	Tracking studi	es		1		
[29]	He et al. (2020)	Vietnam, Malaysia, Japan, China, Taiwan, USA, Singapore	9.3 days	Mean	7.8-10 (95%CI*)	The paper reported on 77 infector-infectee pairs which were sequential/serially tested, using publicly available data. Viral dynamics (Guangzhou, China; N=94) interpreted by the authors suggested an infectious period starting 2.3 (95% Cl, 0.8-3.0 days) days prior to symptoms, peaking 0.7 days (95% Cl, $-0.2-2.0$ days), continuing up to 7 days from onset. * Cl from pre-symptom infectious period only.
[8]	Ma et al. (2020)	Various	~5 days	Median	Range 0- 24	The authors estimated the infectious period as latent minus the serial interval, using a dataset of 1155 cases. Range 0-24; IQR: 2-9; calculated from data presented within the paper.
	Modelling stu	dies				
[27]	Li et al. (2020)	China	3.45 days [posterior estimated from model for documented cases]	median	95%Cl for the mean: 3.19, 3.72	Mathematical model. Priors for <u>mean</u> documented infectious period was a flat [uniform] distribution 2-5. 'Documented' cases were defined as those severe enough to be confirmed. This corralling of the infectious period relative to other

						studies should take into account that the distribution is used for the central tendency, not the whole distribution.
[26,39]	Tuite et al. (a, b) (2020)	Canada	6-6.5 days [prior; fixed parameter within a deterministic model]	Fixed parameter		Mathematical model [deterministic], with a fixed parameter estimate of 6.5 days (a) and 6 days (b), respectively. Important to note that duration for 'mild' was equal to severe cases.
[89]	Lourenco et al. (2020)	UK	~3-5 days [posterior; approximate depending on scenario tested]	mean	95%ci of 3-6 days	Mathematical model. The <u>prior</u> used was given a Gaussian distribution (normal curve); mean 4.5; SD 1; approximate 95%ci of 3-6 days. The reported posterior of this parameter was presented graphically and depended on RO and proportion at risk. Depending on the scenarios tested, mean duration of infectiousness appeared to vary from 3-5 days.
[37]	Zhu et al. (2020)	Wuhan, China	12.5 days [posterior estimated from model]	Mean	11.4 variance	Mathematical model. The parameter was estimated using a Weibull distribution. The prior for this parameter was 10 days. The posterior variance around the mean was 11.4, and therefore the distribution had a long tail. This study was a modelling [SEIR extended model].
[15]	Davies et al. (b) (2020)	UK	7 days [Prior]	Mean		Model with asymptomatic infection compartment. Modelled with a

						gamma distribution, beta 1.4; alpha 5. Despite, the subclinical aspect of this parameter, it could be considered analogous to total infectious period without intervention.
	[14]	Davies et al. (b) (2020)	UK	5 days [Prior]	Mean	Model with asymptomatic infection compartment. Modelled with a gamma distribution, k=4. Authors: "Assumed to be the same duration as total infectious period for clinical cases, including preclinical transmission"
	[38]	Piccolomini and Zama (2020)	Italy	20 days [Prior]	Fixed	Parameter estimate assumed for the infectious period within an SEIRD model, fitted to data from the epidemic in Italy.
831			I			, , , , , , , , , , , , , , , , , , ,
832						

211x152mm (300 x 300 DPI)

Figure 2: Simulation of the parameter distribution used for T3 (the duration of the pre-symptomatic infectious period for those infected individuals who subsequently develop symptoms).

881x635mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 4: Frequency distribution of T5, time from onset of symptoms to recovery (here hospital discharge or death), using patient level raw data

169x169mm (300 x 300 DPI)

Figure 5: Composite inferred model for cycle threshold (CT) value changes from serial RT-PCR testing for SARS-COV2

BMJ Open: first published as 10.1136/bmjopen-2020-039856 on 5 August 2020. Downloaded from http://bmjopen.bmj.com/ on April 7, 2024 by guest. Protected by copyright.

211x152mm (300 x 300 DPI)

1 Supplementary material 1

Figure S1: Conceptual model of the key temporal parameters impacting COVID-19 infection

4 progression over time. T1: Latent period; T2: Asymptomatic infectious period; T3: Pre-

5 symptomatic infectious period; T4: Symptom onset to diagnosis [self-isolation] or

6 hospitalisation; T5: Symptom onset to removed [death or recovery]

2
2
3
4
5
6
7
, 0
8
9
10
11
12
12
13
14
15
16
17
10
18
19
20
21
22
22
23
24
25
26
27
27
28
29
30
31
32
22
33
34
35
36
37
20
38
39
40
41
42
/2
43
44
45
46
47
48
40
49
50
51
52
53
55
54 5-
55
56
57
58
50
72
60

Database	Search strategy (publications accessible 1 st Dec 2019-1 st April 2020)
Pubmed	"coronavirus"[MeSH Terms] OR "coronavirus"[All Fields] OR "COVID-19" Filter: humans Filter: 30 December 2019
Embase.com	('coronavirinae'/exp OR 'coronavirinae' OR 'coronaviridae infection'/exp OR 'coronaviridae infection' OR 'coronavirus disease 2019'/exp OR 'coronavirus'/exp OR coronavirus OR 'coronavirus infection'/de) NOT [medline]/lim AND 'human'/de Filter: 30 December 2019
Science direct	"COVID-19" OR "2019 novel coronavirus infection" OR "2019-nCoV"
Cochrane	"coronavirus" OR "COVID-19"
Infectious diseases society of America search of infectious disease journals	coronavirus OR corona virus OR covid-19 <u>https://academic.oup.com/idsa/search-</u> <u>results?allJournals=1&fl_SiteID=5567&page=1&qb=%7b</u> <u>%22ArticleTitle1%22%3a%22coronavirus+OR+corona+</u> <u>virus+OR+covid-</u> <u>19%22%7d&sort=Date+%E2%80%93+Newest+First</u>
NHS Evidence	"COVID-19" OR "2019 novel coronavirus infection" OR "2019-nCoV" Filter: 30 December 2019
Google Scholar	"Novel coronavirus" OR "SARS-CoV-2" OR "2019-nCoV" OR "COVID-19" AND "infectious"
Preprint servers (i.e. peer-reviewed)	preliminary reports of work that have not been
medRxiv and bioRxiv	Pre populated search: https://connect.medrxiv.org/relate/content/181
HRB Open	"coronavirus" OR "COVID-19"

Page 52 of 63

kid_cat

1 2						
3 4	26	Supplementary	material 2:	Data fo	or meta-ai	nalysis
5 6 7		paper	country	ct	ct_type	range
8 9		Cai et al. (2020a)	China	12	Median	6-22 range
10		Cai et al. (2020b)	China	14	Median	
11 12		Chen et al (2020)	China	12	Max.	
12 13 14		Chen J. et al. (2020) Chong et al	China	11	Median	10-12 (95%
15 16		(2020)	China	21	Max.	
17 18		Fang et al. (2020a) Fang et al.	China	16	Mean	6.7 (s
19 20		(2020b)	China	22	Mean	3.6 (s
20		Hill et al. (2020)	Scotland	9	Max.	
22 23		Hu et al. (2020)	China	12	Median	
24 25		Kim et al. (2020)	Korea	16	Median	14-17 (rang
26 27		Kujawski et al. (2020)	USA	26	Max.	
28		Le et al. (2020)	Vietnam	12	Max.	
29 30		Lee et al. (2020)	Taiwan	20	Max.	
31 32		Lim et al. (2020)	South Korea	16	Max.	
33 34		Ling et al. (2020)	China	10	Median	2-22 (rang 7-18
35 36		Liu et al. (2020)	China	11	Median	range
37 38		Liu et al. (2020)	China	10	Max.	
39 40 41 42		Marchand- SenŽca et al.	Canada	23	Max	
43 44 45					Fo	r peer re

Supplementary	material 2	:Data fo	or meta-a	nalvsis			BMJ (Dpen				5/bmjopen-2020-039				
- F F J			•••									856 on				
paper	country	ct	ct_type	range 6-22	median	iqr	min	max	first_qt	third_qt	n	mean თ გ	sd	se	severit	y sev_bin
Cai et al. (2020a)	China	12	Median	range	12	0 10	6	22	8	15	10	ig <u>p</u> ist 2	6		2 mild	(
Cai et al. (2020b)	China	14	Median		14	9-19 (IOR)			9	19	298	20 2 2	7		0 severe	. 1
Chen et al (2020)	China	12	Max.			(5	10		ר <u>ס</u> 10ס	0		0	-
2020)	China	11	Median	10-12 (95%Cl)	11						242	3 own[gg	8		mild- 3 severe	1
Cheng et al. (2020)	China	21	Max.								1	ideqtfr	0		0 severe	1
ang et al. 2020a) Fang et al	China	16	Mean	6.7 (sd)							24	om tettp	7		mild- 1 moder	ate C
(2020b)	China	22	Mean	3.6 (sd)							8	22	4		1 severe	1
Hill et al. (2020)	Scotland	9	Max.								1	mjøpe	0		0 mild	C
Hu et al. (2020)	China	12	Median	14 17	12	12-14 (IQR)			12	14	5	n.banj.	2		1 mild	C
Kim et al. (2020)	Korea	16	Median	(range)	16		14	17			2	C0 19/	3		2 moder	ate C
Kujawski et al. (2020)	USA	26	Max.								1	on 21g	0		mild- 0 moder	ate C
Le et al. (2020)	Vietnam	12	Max.								1	oritz;	0		0 mild	C
Lee et al. (2020)	Taiwan South	20	Max.								1	7, 2022	0		0 severe	1
Lim et al. (2020)	Korea	16	Max.	2 22							1	4 敗 g	0		0	
Ling et al. (2020)	China	10	Median	(range)	10		2	22	6	11	66	ust. F	4		0 mild-	
Liu et al. (2020)	China	11	Median	range	11		7	18	10	13	10	orottec	3		1 severe	1
Liu et al. (2020)	China	10	Max.								76	te 妇 by			severe	1
warchand- SenŽca et al.	Canada	23	Max								1	copyright	0		0	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 53 of 63								BMJ Op	en			6/bmjope					
1 2 3 4 5	(2020)											en-2020-039856 (
6	Pan et al. (2020)	China	10	Median	8-12 range	10		8	12		2	on 192	3	2			
7 8	0:		10		7-22			_			26	hugų			mild-	0	4
9	Qiu et al. (2020)	China	10	Max	range			/	22		36	15 10	4	1	moderate	0	1
10 11	Qu et al. (2020)	Viotnam	16								1	Q201	0	0	covoro	1	
12	Theyarajan et al.	Vietilalli	10	IVIAX							1	Do	0	0	mild-	T	
13 14	(2020)	Australia	7	Max							1	whloa	0	0	moderate	0	
15	To et al. (2020)	Hong Kong	25	Max.							7	adego f	0	0	mild- severe	1	2
17	Wu et al. (2020)	China	16	Mean	6.7 (sd)						74	rom	7	1	mild- severe	1	2
18 19)/:	China		N. a. all a se							2	ttp://			mild-	0	4
20	Xing et al (2020)	China	14	Median		14					3	bmj			moderate	0	1
21 22	(2020)	Singapore	12	Median		12		1	24		18	opren	6	3	moderate	0	2
23 24	Yuan et al. (2020)	China	6	Median		6	4-10 (IQR)			4 10	25	.bmj:c	5	1	mild- moderate	0	1
25	71 (2020)			N A 1		•	16-23				101	;om/	_	0			
26 27 27	2nou et al. (2020)	China	20	wedian		20	IQR			16 23	191	- Agu ≻	5	0	severe	1	2
28 29 30 31 32												vpril 7, 2024 by ç					
33												gues					
34 35												₽.					
36												otec					
37												ted					
38 30												by c					
40												юру					
41												righ					
42								5									
45 44				For	peer review o	nly -	http://bm	njopen.bn	nj.com	/site/about/guid	elines.xhtm	l.					
45																	
46																	

					BMJ Open		
29	Supplementa	ary material 3: Data for time t	o recovery or	death			
	study	overall_time_disc_death	death	discharge	xb_t5	upp95	low95
	kraemer	20	0	1	18.06537	15.13663	20.99411
	kraemer	16	0	1	18.06537	15.13663	20.99411
	kraemer	24	0	1	18.06537	15.13663	20.99411
	kraemer	24	0	1	18.06537	15.13663	20.99411
	kraemer	25	0	1	18.06537	15.13663	20.99411
	kraemer	22	0	1	18.06537	15.13663	20.99411
	kraemer	28	0	1	18.06537	15.13663	20.99411
	kraemer	16	0	1	18.06537	15.13663	20.9941
	kraemer	25	0	1	18.06537	15.13663	20.9941
	kraemer	37	0		18.06537	15.13663	20.9941
	kraemer	15	0	1	18.06537	15.13663	20.9941
	kraemer	14	0	1	18.06537	15.13663	20.9941
	kraemer	26	0	1	18.06537	15.13663	20.9941
	kraemer	17	0	1	18.06537	15.13663	20.9941
	kraemer	20	0	1	18.06537	15.13663	20.9941
	kraemer	14	0	1	18.06537	15.13663	20.9941
	kraemer	19	0	1	18.06537	15.13663	20.9941
	kraemer	26	0	1	18.06537	15.13663	20.9941
	kraemer	28	0	1	18.06537	15.13663	20.9941
	kraemer	24	0	1	18.06537	15.13663	20.9941
	kraemer	26	0	1	18.06537	15.13663	20.9941
	kraemer	8	0	1	18.06537	15.13663	20.9941
	kraemer	12	0	1	18.06537	15.13663	20.9941
	kraemer	8	0	1	18.06537	15.13663	20.9941
	kraemer	18	0	1	18.06537	15.13663	20.9941
	kraemer	23	0	1	18.06537	15.13663	20.9941
	kraemer	19	0	1	18.06537	15.13663	20.9941

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 55 of 63					BI	NJ Open		6/bmjope
1 2								n-2020-0
3	kraemer	3	0	1		18.06537	15.13663	20.99411 巖
4 5	kraemer	17	0	1	-	18.06537	15.13663	20.99411 🖉
6	kraemer	26	0	1	-	18.06537	15.13663	20.99411 ^{ອັ} ຫ
7	kraemer	19	0	1	-	18.06537	15.13663	20.99411 2
8	kraemer	16	0	1	-	18.06537	15.13663	20.99411 ភ្លី
9 10	kraemer	35	0	1	-	18.06537	15.13663	20.99411 👌
11	kraemer	14	0	1	-	18.06537	15.13663	20.99411 ⁸
12	kraemer	15	0	1	-	18.06537	15.13663	20.99411 g
13	kraemer	29	0	1		18.06537	15.13663	20.99411 호
14	kraemer	30	0	1		18.06537	15.13663	20.99411 👼
16	kraemer	24	0	1	-	18.06537	15.13663	20.99411 _T
17	kraemer	32	0		-	18.06537	15.13663	20.99411 ^ă
18	kraemer	15	0			18.06537	15.13663	20.99411 👼
19 20	kraemer	24	0	1		18.06537	15.13663	20.99411 🛓
21	kraemer	9	0	1		18.06537	15.13663	20.99411 暮
22	kraemer	18	0	1		18.06537	15.13663	20.99411 🚆
23	kraemer	16	0	1		18.06537	15.13663	20.99411 🚆
24 25	kraemer	33	0	1		18.06537	15.13663	20.99411 🖁
26	kraemer	18	0	1		18.06537	15.13663	20.99411 s
27	kraemer	21	0	1		18.06537	15.13663	20.99411 <i>공</i>
28	kraemer	19	0	1		18.06537	15.13663	20.99411 7
29 30	kraemer	7	0	1		18.06537	15.13663	20.99411 [°]
31	kraemer	18	0	1		18.06537	15.13663	20.99411
32	kraemer	30	0	1		18.06537	15.13663	ی ۵.20.99411 ه
33	kraemer	27	0	1		18.06537	15.13663	20.99411 🗑
34	kraemer	20	0	1	_	18.06537	15.13663	
36	kraemer	33	0	1		18.06537	15.13663	20.99411 ^{of}
37	kraemer	15	0	1	_	18.06537	15.13663	20.99411
38	kraemer	5	0	1		18.06537	15.13663	20.99411 ₹
39	kraemer	16	0	1	_	18.06537	15.13663	20.99411 ^{පි}
40		_ •	0	-				yrig
10								ht.

			В	MJ Open		6/bmjo
						pen-20
		_)20-03
kraemer	14	0	1	18.06537	15.13663	20.99411 ထ္ထ
kraemer	21	0	1	18.06537	15.13663	20.99411 o
kraemer	15	0	1	18.06537	15.13663	20.99411 ິ
kraemer	26	0	1	18.06537	15.13663	چ 20.99411
kraemer	17	0	1	18.06537	15.13663	20.99411 ត្រ្
kraemer	17	0	1	18.06537	15.13663	20.99411 8
kraemer	16	0	1	18.06537	15.13663	20.99411 .
kraemer	16	0	1	18.06537	15.13663	20.99411 ĕ
kraemer	26	0	1	18.06537	15.13663	20.99411 ठ ू
kraemer	19	0	1	18.06537	15.13663	20.99411 ត្ត ិ
kraemer	14	0	1	18.06537	15.13663	20.99411]
kraemer	8	0	1	18.06537	15.13663	20.99411 ³
kraemer	34	0	1	18.06537	15.13663	20.99411 👮
linton	10	1	0	18.06537	15.13663	20.99411 🛓
linton	21	1	0	18.06537	15.13663	20.99411 🗧
linton	8	1	0	18.06537	15.13663	20.99411 🚆
linton	11	1	0	18.06537	15.13663	20.99411 💐
linton	11	1	0	18.06537	15.13663	20.99411 🎽
linton	30	1	0	18.06537	15.13663	20.99411 g
linton	32	1	0	18.06537	15.13663	20.99411 콜
linton	10	1	0	18.06537	15.13663	20.99411
linton	19	1	0	18.06537	15.13663	20.99411 ₈
linton	19	1	0	18.06537	15.13663	20.99411 🖁
linton	14	1	0	18.06537	15.13663	يِّ 20.99411
linton	8	1	0	18.06537	15.13663	20.99411 ឆ្នំ
linton	12	1	0	18.06537	15.13663	20.99411 _P
linton	12	1	0	18.06537	15.13663	20.99411 ^g
linton	20	1	0	18.06537	15.13663	20.99411 💆
linton	12	1	0	18.06537	15.13663	20.99411 🦉
linton	7	1	0	18.06537	15.13663	20.99411 👸
						yright.

3 4

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 57 of 63					BMJ Open		6/bmjope
1 2							n-2020-0
3	linton	11	1	0	18.06537	15.13663	20.99411 巖
5	linton	16	1	0	18.06537	15.13663	20.99411 ඉ
6	linton	6	1	0	18.06537	15.13663	20.99411 ອັ
7	linton	6	1	0	18.06537	15.13663	20.99411 2
8	linton	17	1	0	18.06537	15.13663	20.99411 ភ្ល
9 10	linton	15	1	0	18.06537	15.13663	20.99411
11	linton	24	1	0	18.06537	15.13663	20.99411 ⁸
12	linton	41	1	0	18.06537	15.13663	20.99411 💡
13	linton	10	1	0	18.06537	15.13663	20.99411 👌
14	linton	11	1	0	18.06537	15.13663	20.99411 🚆
16	linton	13	1	0	18.06537	15.13663	20.99411 _{ਤੋਂ}
17	linton	13	1	0	18.06537	15.13663	20.99411 ^ă
18	linton	16	1	0	18.06537	15.13663	20.99411 🚦
19 20	linton	13	1	0	18.06537	15.13663	20.99411
21	linton	14	1	0	18.06537	15.13663	20.99411 🗧
22	linton	18	1	0	18.06537	15.13663	20.99411
23	linton	12	1	0	18.06537	15.13663	20.99411 🚆
24 25	tindale	19	0	1	18.06537	15.13663	20.99411
26	tindale	25	0	1	18.06537	15.13663	20.99411 q
27	tindale	25	0	1	18.06537	15.13663	
28	tindale	20	0	1	18.06537	15.13663	20.99411 🧧
29 30	tindale	20	0	1	18.06537	15.13663	20.99411
31	tindale	13	0	1	18.06537	15.13663	20.99411
32	tindale	28	0	1	18.06537	15.13663	20.99411 ຜຼັ
33	tindale	25	0	1	18.06537	15.13663	20.99411 🖉
34 35	tindale	24	0	1	18.06537	15.13663	20.99411 Ţ
36	tindale	14	0	1	18.06537	15.13663	20.99411 ⁶
37	tindale	17	0	1	18.06537	15.13663	20.99411 💆
38	tindale	15	0	1	18.06537	15.13663	20.99411 🦉
39 40	tindale	18	0	1	18.06537	15.13663	20.99411 ^{පි}
41							yrig
12							ht.

			В	SMJ Open		6/bmjoj
						pen-20
				40.00507		20-03
tindale	15	0	1	18.06537	15.13663	20.99411 8
tindale	16	0	1	18.06537	15.13663	20.99411 o
tindale	16	0	1	18.06537	15.13663	20.99411 J
tindale	20	0	1	18.06537	15.13663	چ 20.99411
tindale	17	0	1	18.06537	15.13663	20.99411 ត្រុ
tindale	12	0	1	18.06537	15.13663	20.99411 N
tindale	24	0	1	18.06537	15.13663	20.99411 ^{.0}
tindale	24	0	1	18.06537	15.13663	20.99411 se
tindale	26	0	1	18.06537	15.13663	20.99411 ਰੂ
tindale	16	0	1	18.06537	15.13663	20.99411 👼
tindale	20	0	1	18.06537	15.13663	20.99411 _d
tindale	9	0	1	18.06537	15.13663	20.99411 ³
tindale	15	0	1	18.06537	15.13663	20.99411 👮
tindale	14	0	1	18.06537	15.13663	20.99411 🛓
tindale	18	0	1	18.06537	15.13663	20.99411 🗧
tindale	30	0	1	18.06537	15.13663	20.99411 🚆
tindale	19	0	1	18.06537	15.13663	20.99411 🚊
tindale	17	0	1	18.06537	15.13663	20.99411 🎽
tindale	16	0	1	18.06537	15.13663	20.99411 g
tindale	17	0	1	18.06537	15.13663	20.99411 출
tindale	20	0	1	18.06537	15.13663	20.99411
tindale	23	0	1	18.06537	15.13663	20.99411 👌
tindale	19	0	1	18.06537	15.13663	20.99411 🖁
tindale	12	0	1	18.06537	15.13663	فِي 20.99411
tindale	19	0	1	18.06537	15.13663	20.99411 ឆ្នំ
tindale	17	0	1	18.06537	15.13663	20.99411 _P
tindale	17	0	1	18.06537	15.13663	20.99411 ^{Add}
tindale	14	0	1	18.06537	15.13663	20.99411 Ϋ
tindale	16	0	1	18.06537	15.13663	20.99411 🦉
tindale	30	0	1	18.06537	15.13663	20.99411 <u>ළි</u>
						yright.

Page 59 of 63				В	MJ Open			6/bmjope
1 2 3 4 5 6 7 8 9	tindale tindale tindale tindale tindale	33 19 29 22 10	0 0 0 0 0	1 1 1 1	18.06537 18.06537 18.06537 18.06537 18.06537	15.13663 15.13663 15.13663 15.13663 15.13663 15.13663	20.99411 20.99411 20.99411 20.99411 20.99411	pen-2020-039856 on 5 August 2
10	tindale	20	0	1	18.06537	15.13003	20.99411	020
11	tindale	11	0	1	18.00537	15.13003	20.99411	 D
13	tinuale	15	0	1	10.00557	15.13005	20.99411	luwo
14	tindale	10	0	1	18.00537	15 13663	20.99411	oad
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42								ed from http://bmjopen.bmj.com/ on April 7, 2024 by guest. Protected by copyright.

2 3	•
4	30
4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 3 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 9 0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 323345678901223456789012234567890122345678901223456789012234567890122345678901223456789012234567890123455678901234556789001234556789001235655666666666666666666666666666666666

Supplementary material 4: Stata code // 1st April 2020 /* Code for: Byrne, AW, McEvoy, D, et al. 2020 Inferred duration of infectious period of SARS-CoV-2: rapid review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases */ * Figure 2 gen davies1_gamma = rgamma(5, 1.4) gen davies2_gamma = rgamma(4, 1.25) gen ma normal = rnormal(7.2, 4.96)input hu data

end // Fig 2 visualise twoway (histogram hu_data, fcolor(gs14) lcolor(black)) (histogram davies1_gamma, bin(180) fcolor(ltbluishgray%86) lcolor(none) lwidth(none)) (kdensity davies1 gamma, lcolor(gs11) lwidth(thick)) (kdensity davies2 gamma, lcolor(gs11) lwidth(thick)) (histogram davies2_gamma, bin(120) fcolor(orange_red%20) lcolor(none) lwidth(none)) (histogram ma_normal, bin(100) fcolor(lime%20) lwidth(none)) (kdensity ma normal, lcolor(gs11) lwidth(thick)) if ma n>=0, yscale(line) xtitle(Days since infected) xline(6 6.5 11 3.5, lpattern(dash) lcolor(black) noextend) xlabel(0(5)30) legend(off) scheme(s2color) xsize(20) ysize(16) graphregion(fcolor(white)) plotregion(fcolor(white)) * Figure 3 122 gen rothet3 normal = rnormal(2, 0.6) gen huangt3_normal = rnormal(3.75, 0.332) gen het3 normal = rnormal(2.3, 0.49) gen weit3 normal = rnormal(2.5, 0.89) gen peakt3 normal = rnormal(0.8, 0.5) gen daviesAt3 normal = rgamma(5, 0.48) gen daviesBt3 normal = rgamma(4, 0.375) twoway (histogram rothe, bin(120) fcolor(orange_red%20) lcolor(none) lwidth(none)) (kdensity rothe, lcolor(gs11) lwidth(thick)) (histogram he, bin(100) fcolor(lime%20) lwidth(none)) (kdensity he, lcolor(gs11) lwidth(thick))(histogram wei, bin(100) fcolor(orange%20) lwidth(none)) (kdensity wei, lcolor(gs11) lwidth(thick))(histogram peak, bin(100) fcolor(purple%20) lwidth(none)) (kdensity peak, lcolor(gs11) lwidth(thick))(histogram daviesA, bin(100) fcolor(brown%20) lwidth(none)) (kdensity daviesA, lcolor(gs11) lwidth(thick))(histogram daviesB, bin(100) fcolor(yellow%20) lwidth(none)) (kdensity daviesB, lcolor(gs11) lwidth(thick)) if peak>=0 & wei>=0 & rothe>=0, yscale(line) xtitle(Pre-symptomatic infectious period) xline(0.5 1 1.2 2.6 2.9 3.75 8.2, lpattern(dash) lcolor(black) noextend) xlabel(0(1)10) legend(off) scheme(s2color) xsize(20) ysize(16) graphregion(fcolor(white)) plotregion(fcolor(white)) ytitle(Density) * Figure 4 // meta analysis & meta regression clear // open data = * meta analysis dataset.xls // Fit random effects meta-analytical model, and specify forest plot

BMJ Open

2		
3	165	metaan mean se, dl forest label(paper)
4	166	
5	168	// Torest plot is ligure 4.
0 7	169	// meta regression
8	170 171	// binary child (y/n) variable
9	172	// binary child (y/h) variable
10	173	gen kid_cat = 1 if child==1
11	174 175	replace kid = 2 if adult==1 & child!=1
12	176	iopiace kia 2 ii adaite i a chila. I
15 14	177	tab kid_cat
15	179	* binary children inclusion in sample [REML]
16	180	
17	181 182	<pre>xi: metareg mean i.kid if se>0, wsse(se)</pre>
18	183	// monte carlo model of P-value
19	184	
20	185	xi: metareg mean i.kid if se>0, wsse(se) permute(1000, joint(i.kid))
22	187	
23	188	
24	190	// binary severe (y/n) variable
25	191	encode sever, gen(sev_num) // 4 way categorical
20 27	192 193	$\operatorname{gen} \operatorname{sev} \operatorname{hin} = 0 \text{if sev} n < 3$
28	194	
29	195	replace sev_bin = 1 if sev_n==3 sev_n==4
30	190	
31	198	
32	200	xi: metareg mean i.sev_bin if se>0, wsse(se)
33 34	201	// monte carlo model of P-value
35	202	
36	203	x1: metareg mean 1.sev_bin 11 se>0, wsse(se) permute(1000, joint(1.sev_bin))
37	205	
38	206	* Figure 5
39 40	208	
41	209	
42	210	// Import, open time to discharge death.csv
43	212	
44 45	213 214	// numeric indicator for study category
45 46	215	// namerie indicator for Study category
47	216	encode study, gen(study_)
48	218	
49	219	
50	220 221	<pre>// random effects model for time from onset to removal (discharge or death)</pre>
51 52	222	// 3 levels of study as RE
53	223	vi. vtrog overall time i(study)
54	225	x1. XLIEG OVELALL_LIME, 1(SLUGY_)
55	226	// summarise post-estimtion
56	227	estat summarize
67	/ . / . • •	
57	229	
58 59	229 230 231	// Breusch and Pagan Lagrangian multiplier test for random effects

BMJ Open

2		
3	233	
4	234	// Figure 5: histogram plot with kernel density
5	235	
6	236	<pre>twoway(hist overall_time if study_== 3 , bin(10) fcolor(green%20))(hist</pre>
7	237	<pre>overall_time if study_== 1, bin(10) fcolor(red%20))(hist overall_time if study_==</pre>
<i>'</i>	238	2, bin(10) fcolor(purple%20))(kdensity overall_time_disc_death , lcolor(gs11)
8	239	<pre>lwidth(mthick)), scheme(s2gcolor) legend(off) xsize(20) ysize(16)</pre>
9	240	<pre>graphregion(fcolor(white)) plotregion(fcolor(white)) xline(15.13663 18.06537</pre>
10	241	20.99411, lpattern(dash) lcolor(black) noextend)
11	242	
12	243	
13	244	
11	245	// GLM reporting the variation in mean duration across studies
14	240	
15	24/	x1: reg overall_time 1.study_
16	240	
17	249	// GOF LESL
18	251	astat bottost
19	252	
20	253	// residuals plot
21	254	,, 1001dddio p100
22	255	rvfplot
22	256	
23	257	// prediction
24	258	
25	259	predict pred_study
26	260	
27	261	// visualise
28	262	
29	203	twoway(scatter pred_study_)
30	204	
31	203	
32	267	// GLM reporting the variation in mean duration across removal type [death or
32	268	dischargel
24	269	
54 25	270	xi: reg overall time i.discharge
35	271	
36	272	// GOF test
37	273	
38	274	estat hettest
39	275	
40	270	// residuals plot
41	270	
42	270	rvipiot
43	280	// prodiction
13	281	// prediction
- 1-1 15	282	predict pred study
40	283	L L
40	284	// visualise
4/	285	
48	286	<pre>twoway(scatter pred_study study_)</pre>

BMJ Open: first published as 10.1136/bmjopen-2020-039856 on 5 August 2020. Downloaded from http://bmjopen.bmj.com/ on April 7, 2024 by guest. Protected by copyright.

Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist

	SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
- [TITLE			
	Title	1	Identify the report as a scoping review.	1
	ABSTRACT			
	Structured summary	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
	INTRODUCTION			
	Rationale	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	3
	Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	3
	METHODS			
	Protocol and registration	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	4-5
	Eligibility criteria	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	5
	Information sources*	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	4-5
	Search	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	4-5
	Selection of sources of evidence†	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	4-5
	Data charting process‡	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	4-5
	Data items	11	List and define all variables for which data were sought and any assumptions and simplifications made.	5-7
	Critical appraisal of individual sources of evidence§	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	5-7
	Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	5-7

St. Michael's

	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	8, Tables 1-3
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	Tables 1-3
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	Tables 1-3
Results of individual sources for evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	8-13
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	8-13; figures 1-5
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	14-17
Limitations	20	Discuss the limitations of the scoping review process.	17-18
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	18
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	18

extension for Scoping Reviews.

* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.

[†] A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with *information sources* (see first footnote).

[‡] The frameworks by Arksey and O'Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.

§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.

