Supplementary table 2: Included studies

No.	Authors	Year	Title	Countr	Specialty	Disease	Sample	Intervention	Control	Blinding	Primary	Trial
				y		studied	size				outcome	registration
1.	Sadasiva	2016	Impact of a	United	Medicine	Smoking	120	AI	Standard	Single	Influence	NR
	m, et al.		Collective	States		addiction		recommended	tailored	(study	of	
			Intelligence					motivational	messages	staff)	messages	
			Tailored Messaging					messages				
			System on Smoking									
			Cessation: The									
			Perspect									
			Randomized									
			Experiment									
2.	Morrison	2017	The Effect of	United	Psychiatry	Stress	77	Smartphone-	Daily/oc	Not stated	Notificatio	ISRCTN6717
	, et al.		Timing and	States				based stress	casional		n response	7737
			Frequency of Push					management	notificati			
			Notifications on					system	ons			
			Usage of a						within			
			Smartphone- Based						pre-			
			Stress Management						defined			

			Intervention: An						time			
			Exploratory Trial						frames			
3.	Labovitz,	2017	Using Artificial	United	Cardiology	Ischemic	28	AI system	No daily	Not stated	Adherence	NCT0259925
	et al.		Intelligence to	States		stroke		monitoring	monitori		to therapy	9
			Reduce the Risk of						ng			
			Nonadherence in									
			Patients on									
			Anticoagulation									
			Therapy									
4.	Rostill,	2018	Technology	United	Psychiatry	Dementi	408	Technology-	No	Not stated	Alerts	NR
	et al.		integrated health	Kingdo		a		integrated	TIHM			
			management for	m				health				
			dementia					management				
								for dementia				
5.	Wang, et	2018	Real-time	China	Gastroente	Adenom	1058	AI-aided	Standard	None	Adenoma	ChiCTR-
	al		automatic detection		rology	a		colonoscopy	colonosc		detection	DDD-
			system increases						opy		rate	17012221
			colonoscopic polyp									
			and adenoma									

			detection rates: a									
			prospective									
			randomised									
			controlled study									
6.	Lin, et al.	2019	Diagnostic Efficacy	China	Ophthalmo	Cataract	350	AI-assisted	Normal	Double	Diagnostic	NCT0324084
			and Therapeutic		logy			cataract	clinic		accuracy	8
			Decision-making					detection			for	
			Capacity of an								congenital	
			Artificial								cataracts	
			Intelligence									
			Platform for									
			Childhood									
			Cataracts in Eye									
			Clinics: A									
			Multicentre									
			Randomized									
			Controlled Trial									

7.	Voss, et	2019	Effect of Wearable	United	Psychiatry	Autism	474	AI-driven	Applied	Single	SRS-II,	NCT0356917
	al.		Digital Intervention	States				behavioral	behavior		EGG,	6
			for Improving					intervention	al		VABS-II,	
			Socialization in						analysis		NEPSY-II	
			Children With						therapy		socializati	
			Autism Spectrum								on scores	
			Disorder A									
			Randomized									
			Clinical Trial									
8.	Wu, et	2019	Randomised	China	Gastroente	Upper GI	324	AI-aided	Standard	Single	Blind spot	ChiCTR1800
	al.		controlled trial of		rology	lesions		esophagogastr	esophago		rate	014809
			WISENSE, a real-					oduodenoscop	gastrodu			
			time					у	odenosco			
			quality improving						ру			
			system for									
			monitoring blind									
			spots									
		<u> </u>								<u> </u>	<u> </u>	<u> </u>

			during									
			esophagogastroduo									
			denoscopy									
9.	Wang, et	2020	Effect of a deep-	China	Gastroente	Adenom	1046	AI-aided	Sham	Double	Adenoma	ChiCTR1800
	al.		learning computer-		rology	a		colonoscopy			detection	017675
			aided detection								rate	
			system									
			on adenoma									
			detection during									
			colonoscopy									
			(CADe-DB trial):									
			a double-blind									
			randomised study									
10.	Persell,	2020	Effect of Home	United	Medicine	Hyperten	333	AI-driven	Blood	None	Systolic	NCT0328814
	et al.		Blood Pressure	States		sion		coaching app	pressure		blood	2
			Monitoring via a						tracking		pressure at	
			Smartphone						арр		6 months	
			Hypertension									
			Coaching									
		1										

NCT0337634
7
ļ
t

			During Elective									
			Noncardiac Surgery									
			The HYPE									
			Randomized									
			Clinical Trial									
12.	Pavel, et	2020	A machine-learning	United	Neurology	Neonatal	264	Automated	Conventi	Single	Diagnostic	NCT0243178
	al.		algorithm for	Kingdo		seizures		seizure	onal		accuracy	0
			neonatal seizure	m				detection	EEG		of	
			recognition: a					algorithm			healthcare	
			multicentre,								profession	
			randomised,								als with	
			controlled trial								aid of	
											algorithm	
13.	Nimri, et	2020	Insulin dose	Israel	Endocrinol	Diabetes	108	AI-based	Physicia	Single	Time of	NCT0300380
	al.		optimization using		ogy			decision	n guided		glucose	6
			an automated					support	care		level	
			artificial					system			within	
			intelligence-based								target	
			decision support								range	
			<u> </u>									

			system in youths									
			with type 1 diabetes									
14.	Liu, et al.	2020	The single-monitor	China	Gastroente	Adenom	790	AI-aided	Routine	None	Adenoma	ChiCTR1800
			trial: an embedded		rology	a		colonoscopy	colonosc		detection	018058
			CADe						opy		rate	
			system increased									
			adenoma detection									
			during									
			colonoscopy: a									
			prospective									
			randomized study									
15.	Gong, et	2020	Detection of	China	Gastroente	Adenom	704	AI-aided co	Unassiste	Single	Adenoma	ChiCTR1900
	al.		colorectal		rology	a		lonoscopy	d		detection	021984
			adenomas with a						colonosc		rate	
			real-time						ору			
			computer-aided									
			system									
			(ENDOANGEL): a									
			randomised									

16. Luo, et 2020 Artificial China Gastroente Polyps 150 AI-aided Unaided None al. Intelligence- Assisted Colonoscopy for Detection	Polyp detection rate	NCT0471262 65
Assisted Colonoscopy for		65
Colonoscopy for	rate	
Detection Detection		
of Colon Polyps: a		
Prospective,		
Randomized Cohort		
Study		
17. Anan, at 2021 Effects of an Japan Orthopaedi Neck/sho 94 AI-assisted Usual None	Pain level	(UMIN-CTR)
al. Artificial cs ulder and health care		000033894
Intelligence- back pain program routine		
Assisted Health		
Program on		
Workers With		
Neck/Shoulder		
Pain/Stiffness and		
Low Back Pain:		

			Randomized									
			Controlled Trial									
18.	Blomber	2021	Effect of Machine	Denma	Cardiology	Cardiac	654	AI-led alerts	Normal	Double	Recognitio	NCT0421930
	g, et al.		Learning on	rk		arrest			protocol		n of	6
			Dispatcher								cardiac	
			Recognition of Out-								arrest	
			of-Hospital Cardiac									
			Arrest During Calls									
			to Emergency									
			Medical Services:									
			A Randomized									
			Clinical Trial									
19.	Chen, et	2021	The Role of Deep	China	Cardiology	Heart	80	AI-based	Routine	None	Mortality	NR
	al.		Learning-Based			failure		echocardiogra	echocard		and	
			Echocardiography					phy	iography		rehospitali	
			in the Diagnosis								zation rate	
			and Evaluation of									
			the Effects of									
			Routine Anti-Heart-									

			Failure Western									
			Medicines in									
			Elderly Patients									
			with Acute Left									
			Heart Failure									
20.	Eng, et	2021	Artificial	United	Radiology	Skeletal	1903	AI diagnostic	Without	None	Mean	NCT0353009
	al.		Intelligence	States		age		aid	aid		absolute	8
			Algorithm								difference	
			Improves								between	
			Radiologist								the	
			Performance in								skeletal	
			Skeletal Age								age	
			Assessment									
21.	Harada,	2021	Efficacy of	Japan	Medicine	Various	22	AI-assisted	Without	Single	Diagnostic	UMIN000042
	et al.		artificial-			medical		differential	AI		accuracy	881
			intelligence-driven			condition		diagnosis	assistanc			
			differential-			S			e			
			diagnosis list on the									
			diagnostic accuracy									
			<u> </u>					<u> </u>				

			of physicians: An									
			open-label									
			randomized									
			controlled study									
22.	Hassoon,	2021	Randomized trial of	United	Oncology	Different	42	AI coaching	Written	Single	Change in	NCT0321207
	et al.		two artificial	States		cancer			informati		steps per	9
			intelligence			types			on		day	
			coaching									
			interventions to									
			increase physical									
			activity in cancer									
			survivors									
23.	Jayakum	2021	Comparison of an	United	Orthopaedi	Osteoart	129	AI-enabled	Educatio	None	Knee OA	NCT0395600
	ar, et al.		Artificial	States	cs	hritis		patient	nal		Decision	4
			Intelligence-					decision aid	material		Quality	
			Enabled Patient									
			Decision Aid vs									
			Educational									
			Material on									
			iviaterial on									

			Decision Quality,									
			Shared Decision-									
			Making, Patient									
			Experience, and									
			Functional									
			Outcomes in Adults									
			with Knee									
			Osteoarthritis: A									
			Randomized									
			Clinical Trial									
24.	Kamba,	2021	Reducing adenoma	Japan	Gastroente	Adenom	358	AI-aided	Unaided	None	Adenoma	jRCTs032190
	et al.		miss rate of		rology	a		colonoscopy	colonosc		miss rate	061
			colonoscopy						ору			
			assisted by artificial									
			intelligence: a									
			multicenter									
			randomized									
			controlled trial									
	1		L	l	1	1	L	l	1	1	1	

25.	Luna, et	2021	Artificial	United	Medicine	Physical	30	AI-assisted	Unassiste	Single	Successful	NCT0462459
	al.		intelligence	States		therapy		exercise	d		squats	4
			application versus					application	exercise			
			physical therapist									
			for squat									
			evaluation: a									
			randomized									
			controlled trial									
26.	Medina,	2021	Electrophysiologica	Spain	Psychiatry	Attention	29	AI-driven	Commeri	Single	Conners	ISRCTN7104
	et al.		1 brain changes			deficit		cognitive	cal video		CPT	1318
			associated with			hyperacti		stimulation	games		(CPT-III)	
			cognitive			vity		program			score	
			improvement in a			disorder						
			pediatric attention									
			deficit hyperactivity									
			disorder digital									
			artificial									
			intelligence-driven									
			intervention:									
	J	<u> </u>										

			Randomized									
			controlled trial									
27.	Mertens,	2021	Artificial	Germa	Dentistry	Caries	22	AI-based	Unaided	None	Accuracy	DRKS000223
	et al.		intelligence for	ny				diagnostic	diagnosis		metrics	57
			caries detection:					support				
			Randomized trial									
28.	Prochask	2021	A randomized	United	Medicine	Substanc	180	AI relational	No	None	Past-	NCT0409600
	a, et al.		controlled trial of a	States		e-related		conversational	interventi		month	1
			therapeutic			disorders		agent	on during		substance	
			relational agent for						the study		use	
			reducing substance								occasions	
			misuse during the									
			COVID-19									
			pandemic									
29.	Rafferty,	2021	A novel mobile app	United	Gastroente	Irritable	58	AI dietry	Educatio	None	Quality of	NCT0425655
	et al.		(heali) for disease	States	rology	bowel		mobile app	nal		life score	1
			treatment in			syndrom			material			
			participants with			e						
			irritable bowel									

			syndrome:									
			Randomized									
			controlled pilot trial									
30.	Seok, et	2021	A personalized 3d-	Korea	Endocrinol	Thyroid	53	AI 3D-printed	Without	None	Patient	KCT0005069
	al.		printed model for		ogy	lesions		thyroid model	model		general	
			obtaining informed								knowledge	
			consent process for								and	
			thyroid surgery: A								satisfactio	
			randomized clinical								n	
			study using a deep									
			learning approach									
			with mesh-type 3d									
			modeling									
31.	Seol, et	2021	Artificial	United	Paediatrics	Childhoo	184	AI-assisted	Usual	Single	Asthma	NCT0286596
	al.		intelligence-assisted	States		d asthma		decision	asthma		exacerbati	7
			clinical decision					support	care		on	
			support for								occurrence	
			childhood asthma								within one	
			management: A								year	

			randomized clinical									
			trial									
32.	Strombla	2021	Effect of a	United	Surgery	Gynaecol	683	AI-assisted	Standard	None	Accurate	NCT0347137
	d, et al.		Predictive Model	States		ogical		surgical	estimatio		surgery	7
			on Planned Surgical			and		predictions	n process		duration	
			Duration Accuracy,			colorecta					prediction	
			Patient Wait Time,			1 surgery						
			and Use of									
			Presurgical									
			Resources: A									
			Randomized									
			Clinical Trial									
33.	Turino,	2021	Management and	Spain	Pulmonolo	Obstructi	60	Intelligent	Standard	None	Complianc	NCT0311695
	et al.		treatment of		gy	ve sleep		monitoring	manage		e to CPAP	8
			patients with			apnea		system	ment			
			obstructive sleep									
			apnea using an									
			intelligent									
			monitoring system									

			based on machine									
			learning aiming to									
			improve continuous									
			positive airway									
			pressure treatment									
			compliance:									
			Randomized									
			controlled trial									
34.	Wang, et	2021	Utilization of	China	Gastroente	Early	80	Endoscopy	Endosco	None	Detection	NR
	al.		Ultrasonic Image		rology	gastric		with AI-based	py alone		rate of	
			Characteristics			cancer		ultrasound			upper	
			Combined with					imaging			gastric	
			Endoscopic								cancer	
			Detection on the									
			Basis of Artificial									
			Intelligence									
			Algorithm in									
			Diagnosis of Early									
			Upper									

			Gastrointestinal									
			Cancer									
35.	Wu, et	2021	Evaluation of the	China	Gastroente	Early	1050	AI-aided	Endosco	Single	Number of	ChiCTR1800
	al.		effects of an		rology	gastric		endoscopy	py alone		blind spots	018403
			artificial			cancer					during	
			intelligence system								endoscopy	
			on endoscopy									
			quality and									
			preliminary testing									
			of its performance									
			in detecting early									
			gastric cancer: a									
			randomized									
			controlled trial									
36.	Wu, et	2021	Effect of a deep	China	Gastroente	Gastric	1886	AI-assisted	Unaided	Single	Gastric	ChiCTR2000
	al.		learning-based		rology	neoplasm		endoscopy	endoscop		neoplasm	034453
			system on the miss						у		miss rate	
			rate of gastric									
			neoplasms during									

gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial	
single-centre, tandem, randomised	
tandem, randomised	
controlled trial	
	I
37. Xu, et al. 2021 The Clinical Value China Ophthalmo Fungal 1089 AI-assisted Unassiste None Accuracy	NR
of Explainable logy keratitis image reading d image	
Deep Learning for reading	
Diagnosing Fungal	
Keratitis Using in	
vivo Confocal	
Microscopy Images	
38. Xu, et al. 2021 Artificial China Gastroente Polyp 2352 AI-assisted Conventi None Polyp	ChiCTR1800
intelligence-assisted rology colonoscopy onal detection	015607
colonoscopy: A colonosc rate	
prospective, opy	
multicenter,	
randomized	

			controlled trial of									
			polyp detection									
39.	Yao, et	2021	Artificial	United	Cardiology	Low	358	AI-enabled	Usual	None	New	NCT0400008
	al.		intelligence-enabled	States		ejection		electrocardiog	care		diagnosis	7
			electrocardiograms			fraction		rams			of low	
			for identification of								ejection	
			patients with low								fraction	
			ejection fraction: a									
			pragmatic,									
			randomized clinical									
			trial									
40.	Zeng, et	2021	Long-Term	China	Medicine	Sports	150	AI-based	General	None	Blood	NR
	al.		Assessment of			health		personalized	manage		glucose,	
			Rehabilitation			manage		sports	ment		blood	
			Treatment of Sports			ment		management			pressure,	
			through Artificial					service system			lipids	
			Intelligence									
			Research									

41.	Zhang, et	2021	Artificial	China	Oncology	Breast	90	AI-based ultra	Routine	Double	Accuracy	NR
	al.		Intelligence			cancer		sound image	ultrasoun		metrics	
			Algorithm-Based					segmentation	d			
			Ultrasound Image									
			Segmentation									
			Technology in the									
			Diagnosis of Breast									
			Cancer Axillary									
			Lymph Node									
			Metastasis									
42.	Zhang, et	2021	Value of	China	Paediatrics	Cerebral	73	AI-assisted	Original	None	Cerebral	NR
	al.		Rehabilitation			palsy		analysis of	images		artery	
			Training for					brain images			blood flow	
			Children with								velocity	
			Cerebral Palsy								(VP) and	
			Diagnosed and								Vasscular	
			Analyzed by								pulse	
			Computed								index (PI)	
			Tomography									
			l	l .		l .	l	l	l	l	l	

Supplemental material

- 1. Sadasivam RS, Borglund EM, Adams R, Marlin BM, Houston TK. Impact of a collective intelligence tailored messaging system on smoking cessation: the Perspect randomized experiment. *JMIR* 2016;18(11):e285.
- 2. Morrison LG, Hargood C, Pejovic V, Geraghty AW, Lloyd S, Goodman N, et al. The effect of timing and frequency of push notifications on usage of a smartphone-based stress management intervention: an exploratory trial. *PloS one* 2017;12(1):e0169162.
- 3. Labovitz DL, Shafner L, Reyes Gil M, Virmani D, Hanina A. Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. *Stroke* 2017;48(5):1416-9.
- 4. Rostill H, Nilforooshan R, Morgan A, Barnaghi P, Ream E, Chrysanthaki T. Technology integrated health management for dementia.

 Br J Community Nurs 2018;23(10):502-8.
- 5. Wang P, Berzin TM, Brown JRG, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. *Gut* 2019;68(10):1813-9.

- 6. Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. *EClinicalMedicine* 2019; 9: 52–9.
- 7. Voss C, Schwartz J, Daniels J, Kline A, Haber N, Washington P, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: a randomized clinical trial. *JAMA Pediatr* 2019;173(5):446-54.
- 8. Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. *Gut* 2019;68(12):2161-9.
- 9. Wang P, Liu X, Berzin TM, Brown JRG, Liu P, Zhou C, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. *Lancet Gastroenterol Hepatol* 2020;5(4):343-51.
- 10. Persell SD, Peprah YA, Lipiszko D, Lee JY, Li JJ, Ciolino JD, et al. Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: a randomized clinical trial. *JAMA Netw Open* 2020;3(3):e200255-e.
- 11. Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al. Effect of a machine learning–derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. *JAMA* 2020;323(11):1052-60.

- 12. Pavel AM, Rennie JM, de Vries LS, Blennow M, Foran A, Shah DK, et al. A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. *The Lancet Child & Adolescent Health* 2020;4(10):740-9.
- 13. Nimri R, Battelino T, Laffel LM, Slover RH, Schatz D, Weinzimer SA, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. *Nature medicine* 2020;26(9):1380-4.
- 14. Liu P, Wang P, Glissen Brown JR, Berzin TM, Zhou G, Liu W, et al. The single-monitor trial: an embedded CADe system increased adenoma detection during colonoscopy: a prospective randomized study. *Therap Adv Gastroenterol* 2020;13:1756284820979165.
- 15. Gong D, Wu L, Zhang J, Mu G, Shen L, Liu J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. *Lancet Gastroenterol Hepatol* 2020;5(4):352-61.
- 16. Luo Y, Zhang Y, Liu M, Lai Y, Liu P, Wang Z, Xing T, Huang Y, Li Y, Li A, Wang Y. Artificial intelligence-assisted colonoscopy for detection of colon polyps: a prospective, randomized cohort study. *Journal of Gastrointestinal Surgery* 2021;25(8):2011-8.
- 17. Anan T, Kajiki S, Oka H, et al. Effects of an Artificial Intelligence-Assisted Health Program on Workers With Neck/Shoulder Pain/Stiffness and Low Back Pain: Randomized Controlled Trial. *JMIR Mhealth Uhealth* 2021;9(9):e27535.
- 18. 1. Blomberg SN, Christensen HC, Lippert F, et al. Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services: A Randomized Clinical Trial. *JAMA Netw Open* 2021;4(1):e2032320.
- 19. Chen J, Gao Y. The Role of Deep Learning-Based Echocardiography in the Diagnosis and Evaluation of the Effects of Routine Anti-Heart-Failure Western Medicines in Elderly Patients with Acute Left Heart Failure. *Journal of Healthcare Engineering* 2021;2021

- 20. Eng DK, Khandwala NB, Long J, et al. Artificial intelligence algorithm improves radiologist performance in skeletal age assessment: A prospective multicenter randomized controlled trial. *Radiology* 2021;301(3):692-99.
- 21. Harada Y, Katsukura S, Kawamura R, et al. Efficacy of artificial-intelligence-driven differential-diagnosis list on the diagnostic accuracy of physicians: An open-label randomized controlled study. *International Journal of Environmental Research and Public Health* 2021;18(4):1-10.
- 22. Hassoon A, Baig Y, Naiman DQ, et al. Randomized trial of two artificial intelligence coaching interventions to increase physical activity in cancer survivors. *npj Digital Medicine* 2021;4(1)
- 23. Jayakumar P, Moore MG, Furlough KA, et al. Comparison of an Artificial Intelligence-Enabled Patient Decision Aid vs Educational Material on Decision Quality, Shared Decision-Making, Patient Experience, and Functional Outcomes in Adults with Knee Osteoarthritis: A Randomized Clinical Trial. JAMA Network Open 2021;4(2)
- 24. Kamba S, Tamai N, Saitoh I, et al. Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a multicenter randomized controlled trial. *Journal of Gastroenterology* 2021;56(8):746-57.
- 25. Luna A, Casertano L, Timmerberg J, et al. Artificial intelligence application versus physical therapist for squat evaluation: a randomized controlled trial. *Scientific reports* 2021;11(1):18109.

- 26. Medina R, Bouhaben J, de Ramon I, et al. Electrophysiological brain changes associated with cognitive improvement in a pediatric attention deficit hyperactivity disorder digital artificial intelligence-driven intervention: Randomized controlled trial. *Journal of Medical Internet Research* 2021;23(11)
- 27. Mertens S, Krois J, Cantu AG, et al. Artificial intelligence for caries detection: Randomized trial. *J Dent* 2021;115:103849.
- 28. Prochaska JJ, Vogel EA, Chieng A, et al. A randomized controlled trial of a therapeutic relational agent for reducing substance misuse during the COVID-19 pandemic. *Drug and Alcohol Dependence* 2021;227
- 29. Rafferty AJ, Hall R, Johnston CS. A novel mobile app (heali) for disease treatment in participants with irritable bowel syndrome:

 Randomized controlled pilot trial. *Journal of Medical Internet Research* 2021;23(3)
- 30. Seok J, Yoon S, Ryu CH, et al. A personalized 3d-printed model for obtaining informed consent process for thyroid surgery: A randomized clinical study using a deep learning approach with mesh-type 3d modeling. *Journal of Personalized Medicine* 2021;11(6)
- 31. Seol HY, Shrestha P, Muth JF, et al. Artificial intelligence-assisted clinical decision support for childhood asthma management: A randomized clinical trial. *PLoS ONE* 2021;16(8 August)
- 32. Stromblad CT, Baxter-King RG, Meisami A, et al. Effect of a Predictive Model on Planned Surgical Duration Accuracy, Patient Wait Time, and Use of Presurgical Resources: A Randomized Clinical Trial. *JAMA Surgery* 2021;156(4):315-21.

- 33. Turino C, Benitez ID, Rafael-Palou X, et al. Management and treatment of patients with obstructive sleep apnea using an intelligent monitoring system based on machine learning aiming to improve continuous positive airway pressure treatment compliance: Randomized controlled trial. *Journal of Medical Internet Research* 2021;23(10)
- 34. Wang L, Song H, Wang M, et al. Utilization of Ultrasonic Image Characteristics Combined with Endoscopic Detection on the Basis of Artificial Intelligence Algorithm in Diagnosis of Early Upper Gastrointestinal Cancer. *J Healthc Eng* 2021;2021:2773022.
- 35. Wu L, He X, Liu M, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial. *Endoscopy* 2021;53(12):1199-207
- Wu L, Shang R, Sharma P, et al. Effect of a deep learning-based system on the miss rate of gastric neoplasms during upper gastrointestinal endoscopy: a single-centre, tandem, randomised controlled trial. *The Lancet Gastroenterology and Hepatology* 2021;6(9):700-08.
- 37. Xu F, Jiang L, He W, et al. The Clinical Value of Explainable Deep Learning for Diagnosing Fungal Keratitis Using in vivo Confocal Microscopy Images. *Frontiers in Medicine* 2021;8
- 38. Xu L, He X, Zhou J, et al. Artificial intelligence-assisted colonoscopy: A prospective, multicenter, randomized controlled trial of polyp detection. *Cancer Medicine* 2021;10(20):7184-93.
- 39. Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. *Nature Medicine* 2021;27(5):815-19.
- 40. Zeng C, Huang Y, Yu L, et al. Long-Term Assessment of Rehabilitation Treatment of Sports through Artificial Intelligence Research.

 Comput Math Methods Med 2021;2021:4980718.

- 41. Zhang L, Jia Z, Leng X, et al. Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis. *J Healthc Eng* 2021;2021:8830260.
- 42. Zhang X, Wang Z, Liu J, et al. Value of Rehabilitation Training for Children with Cerebral Palsy Diagnosed and Analyzed by Computed Tomography Imaging Information Features under Deep Learning. *J Healthc Eng* 2021;2021:6472440.